Epithelial-Mesenchymal Transition in Cancer
Keywords:
Epithelial-mesenchymal transition (EMT), Cancer metastasis, Drug resistance, Signaling pathways, Tumor microenvironment, Immune evasion, Cancer stemness, Immune checkpointsAbstract
Epithelial-mesenchymal transition (EMT) is a reversible process that enables carcinoma cells to become invasive and therapy-resistant, thereby affecting clinical outcomes such as relapse and treatment failure. In tumors, EMT is triggered by pathways such as TGF-β, Wnt/β-catenin, Notch, PI3K/Akt/mTOR, MAPK, hypoxia, and inflammatory cytokines. These activate EMT-inducing transcription factors, including Snail, Slug, Twist, and ZEB1/2. Noncoding RNAs, like the ZEB–miR-200 axis, also play roles. These changes create intermediate epithelial–mesenchymal states linked to collective migration, stemness, tumor recurrence, and therapy resistance. EMT also promotes immune evasion. Myeloid and stromal cells, especially tumor-associated macrophages and MDSCs, promote EMT and suppress antitumor immunity. EMT reduces antigen presentation, increases immune checkpoints such as PD-L1, and alters chemokines to attract immunosuppressive T cells, helping tumors evade detection. EMT contributes to multidrug resistance by altering cell adhesion and motility and by activating kinases such as STAT3, AXL, and EGFR/ERK. Targeting or reversing EMT can increase tumor sensitivity to treatment and improve outcomes. Combinations of EMT inhibitors (e.g., TGF-β and PI3K inhibitors), epigenetic therapies, and RNA-based reprogramming are being evaluated. New multi-omics and liquid biopsy technologies enable real-time monitoring of EMT status to support more personalized care. Recognizing EMT as a key driver of tumor progression creates new opportunities for targeted treatment.
References
1. Siegel RL, Kratzer TB, Giaquinto AN, Sung H, Jemal A. Cancer statistics, 2025. CA Cancer J Clin. 2025;75(1):10-45. doi:10.3322/caac.21871
2. Wagle NS, Nogueira L, Devasia TP, Mariotto AB, Yabroff KR, Islami F, et al. Cancer treatment and survivorship statistics, 2025. CA Cancer J Clin. 2025;75(4):308-340. doi:10.3322/caac.70011.
3. Nguyen DX, Massagué J. Genetic determinants of cancer metastasis. Nat Rev Genet. 2007; 8(5):341 52. doi:10.1038/nrg2101
4. Chen LL, Blumm N, Christakis NA, Barabási A-L, Deisboeck TS. Cancer metastasis networks and the prediction of progression patterns. Br J Cancer. 2009;101(5):749 58. doi:10.1038/sj.bjc.6605214
5. Ganesh K, Massagué J. Targeting metastatic cancer. Nat Med. 2021;27(1):34-44. doi:10.1038/s41591-020-01195-4
6. Smith BN, Bhowmick NA. Role of EMT in Metastasis and Therapy Resistance. J Clin Med. 2016;5(2):17. doi:10.3390/jcm5020017
7. Santamaria PG, Moreno Bueno G, Portillo F, Cano A. EMT: present and future in clinical oncology. Mol Oncol. 2017;(7):718 738. doi:10.1002/1878-0261.12091
8. De Craene B, Berx G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 2013;(2):97 110. doi:10.1038/nrc3447
9. Díaz López A, Moreno Bueno G, Cano A. Role of microRNA in epithelial to mesenchymal transition and metastasis and clinical perspectives. Cancer Manag Res. 2014;6:205 216. doi:10.2147/cmar.s38156
10. Nieto MA. The ins and outs of the epithelial to mesenchymal transition in health and disease. Annu Rev Cell Dev Biol. 2011;27:347 376. doi:10.1146/annurev-cellbio-092910-154036
11. Nieto MA, Cano A. The epithelial mesenchymal transition under control: global programs to regulate epithelial plasticity. Semin Cancer Biol. 2012;(5):361 368. doi:10.1016/j.semcancer.2012.05.003
12. Peinado H, Olmeda D, Cano A. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer. 2007;7(6):415 428. doi:10.1038/nrc2131
13. Tam WL, Weinberg RA. The epigenetics of epithelial mesenchymal plasticity in cancer. Nat Med. 2013;19(11):1438 1449. doi:10.1038/nm.3336
14. Yang J, Weinberg RA. Epithelial mesenchymal transition: at the crossroads of development and tumor metastasis. Dev Cell. 2008 Jun;14(6):818 829. doi:10.1016/j.devcel.2008.05.009
15. Thiery JP, Acloque H, Huang RYJ, Nieto MA. Epithelial mesenchymal transitions in development and disease. Cell. 2009;139(5):871 890. doi:10.1016/j.cell.2009.11.007
16. Nieto MA, Huang RY, Jackson RA, Thiery JP. EMT: 2016. Cell. 2016;166(1):21 45. doi:10.1016/j.cell.2016.06.028
17. Lambert AW, Pattabiraman DR, Weinberg RA. Emerging biological principles of metastasis. Cell. 2017 Feb 9;168(4):670 691. doi:10.1016/j.cell.2016.11.037
18. Nieto MA. Epithelial plasticity: a common theme in embryonic and cancer cells. Science. 2013;342(6163):1234850. doi:10.1126/science.1234850
19. Brabletz S, Schuhwerk H, Brabletz T, Stemmler MP. Dynamic EMT: a multi tool for tumor progression. EMBO J. 2021;40(8):e108647. doi:10.15252/embj.2021108647
20. Hay ED. An overview of epithelio mesenchymal transformation. Cells Tissues Organs. 1995;154(1):8 20. doi:10.1159/000147748
21. Arnoux V, Nassour M, L’Helgoualc’h A, Hipskind RA, Savagner P. Erk5 controls Slug expression and keratinocyte activation during wound healing. Mol Biol Cell. 2008;19(12):4738 4749. doi:10.1091/mbc.e07-10-1078
22. Ahmed N, Maines Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N. Molecular pathways regulating EGF induced epithelio mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol. 2006;290(6):C1532 C1542. doi:10.1152/ajpcell.00478.2005
23. Kalluri R. EMT: when epithelial cells decide to become mesenchymal like cells. J Clin Invest. 2009;119(6):1417 1419. doi:10.1172/jci39675
24. Gumbiner BM. Epithelial morphogenesis. Cell. 1992;69(3):385 387. doi:10.1016/0092-8674(92)90440-n
25. Yeaman C, Grindstaff KK, Hansen MD, Nelson WJ. Cell polarity: versatile scaffolds keep things in place. Curr Biol. 1999;9(13):R515 R517. doi:10.1016/s0960-9822(99)80324-8
26. Kalluri R, Weinberg RA. The basics of epithelial mesenchymal transition. J Clin Invest. 2009;119(6):1420 1428. doi:10.1172/jci39104
27. Felipe Lima J, Nofech Mozes S, Bayani J, Bartlett JMS. EMT in breast carcinoma—a review. J Clin Med. 2016;5(7):65. doi:10.3390/jcm5070065
28. Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer. 2009;9(4):265 273. doi:10.1038/nrc2620
29. Taylor MA, Parvani JG, Schiemann WP. The pathophysiology of epithelial mesenchymal transition induced by transforming growth factor beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia. 2010;15(2):169 190. doi:10.1007/s10911-010-9181-1
30. Singh M, Yelle N, Venugopal C, Singh SK. EMT: Mechanisms and therapeutic implications. Pharmacol Ther. 2018;182:80 94. doi:10.1016/j.pharmthera.2017.08.009.
31. Heerboth S, Housman G, Leary M, Longacre M, Byler S, Lapinska K, et al. EMT and tumor metastasis. Clin Transl Med. 2015;4:6. doi:10.1186/s40169-015-0048-3
32. Boutet A, Esteban MA, Maxwell PH, Nieto MA. Reactivation of Snail genes in renal fibrosis and carcinomas: a process of reversed embryogenesis? Cell Cycle. 2007;6(6):638 642. doi:10.4161/cc.6.6.4022
33. Grille SJ, Bellacosa A, Upson J, Klein-Szanto AJ, van Roy F, Lee-Kwon W, et al. The protein kinase Akt induces epithelial mesenchymal transition and promotes enhanced motility and invasiveness of squamous cell carcinoma lines. Cancer Res. 2003;63(9):2172-2178. PMID: 12727836
34. Vega S, Morales AV, Ocana OH, Valdés F, Fabregat I, Nieto MA. Snail blocks the cell cycle and confers resistance to cell death. Genes Dev. 2004;18(10):1131 1143. doi:10.1101/gad.294104
35.Kim HJ, Litzenburger BC, Cui X, Delgado DA, Grabiner BC, Lin X, et al. Constitutively active type I insulin-like growth factor receptor causes transformation and xenograft growth of immortalized mammary epithelial cells and is accompanied by an epithelial-to-mesenchymal transition mediated by NF-kappaB and snail. Mol Cell Biol. 2007;27(8):3165 3175. doi:10.1128/mcb.01315-06
36. Graham TR, Zhau HE, Odero-Marah VA, Osunkoya AO, Kimbro KS, Tighiouart M, et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 2008;68(7):2479 2488. doi:10.1158/0008-5472.can-07-2559
37. Xu J, Liu S, Yang X, Cao S, Zhou Y. Paracrine HGF promotes EMT and mediates the effects of PSC on chemoresistance by activating c-Met/PI3K/Akt signaling in pancreatic cancer in vitro. Life Sci. 2020;263:118523. doi:10.1016/j.lfs.2020.118523
38. Zhang B, Li Y, Wu Q, Xie L, Barwick B, Fu C, et al. Acetylation of KLF5 maintains EMT and tumorigenicity to cause chemoresistant bone metastasis in prostate cancer. Nat Commun. 2021;12(1):1714. doi:10.1038/s41467-021-21976-w
39. Mitra T, Prasad P, Mukherjee P, Chaudhuri SR, Chatterji U, Roy SS. Stemness and chemoresistance are imparted to the OC cells through TGFβ1 driven EMT. J Cell Biochem. 2018;119(7):5775 5787. doi:10.1002/jcb.26753
40. Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, et al. CircPTK2/PABPC1/SETDB1 axis promotes EMT-mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett. 2023;554:216023. doi:10.1016/j.canlet.2022.216023
41. Zhang L, Zhao XL, Cao ZJ, Li KD, Xu LY, Tang F, et al. Ginsenoside CK inhibits EMT and overcomes oxaliplatin resistance in gastric cancer by targeting the PI3K/Akt pathway. Phytomedicine. 2025;140:156516. doi:10.1016/j.phymed.2025.156516
42. Meng Q, Shi S, Liang C, Liang D, Hua J, Zhang B, et al. Abrogation of glutathione peroxidase-1 drives EMT and chemoresistance in pancreatic cancer by activating ROS-mediated Akt/GSK3β/Snail signaling. Oncogene. 2018;37(44):5843 5857. doi:10.1038/s41388-018-0392-z
43. Li Y, Hong J, Jung BK, Oh E, Yun CO. Oncolytic Ad co-expressing decorin and Wnt decoy receptor overcomes chemoresistance of desmoplastic tumor through degradation of ECM and inhibition of EMT. Cancer Lett. 2019;459:15 29. doi:10.1016/j.canlet.2019.05.033
44. Zhu W, Sun J, Jing F, Xing Y, Luan M, Feng Z, et al. GLI2 inhibits cisplatin sensitivity in gastric cancer through DEC1/ZEB1 mediated EMT. Cell Death Dis. 2025;16(1):204. doi:10.1038/s41419-025-07564-6
45. Xiong Y, Sun F, Dong P, Watari H, Yue J, Yu MF, et al. iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling. J Exp Clin Cancer Res. 2017;36(1):48. doi:10.1186/s13046-017-0520-6
46. Weadick B, Nayak D, Persaud AK, Hung SW, Raj R, Campbell MJ, Chen W, Li J, Williams TM, Govindarajan R. EMT induced gemcitabine resistance in pancreatic cancer involves the functional loss of equilibrative nucleoside transporter 1. Mol Cancer Ther. 2021;20(2):410 422. doi:10.1158/1535-7163.mct-20-0316
47. Zhao H, Duan Q, Zhang Z, Li H, Wu H, Shen Q, et al. Up-regulation of glycolysis promotes the stemness and EMT phenotypes in gemcitabine-resistant pancreatic cancer cells. J Cell Mol Med. 2017;21(9):2055 2067. doi:10.1111/jcmm.13126
48. Okada Y, Takahashi N, Takayama T, Goel A. LAMC2 promotes cancer progression and gemcitabine resistance through modulation of EMT and ATP-binding cassette transporters in pancreatic ductal adenocarcinoma. Carcinogenesis. 2021;42(4):546 556. doi:10.1093/carcin/bgab011
49. Zhang PF, Li KS, Shen YH, Gao PT, Dong ZR, Cai JB, et al. Galectin-1 induces hepatocellular carcinoma EMT and sorafenib resistance by activating FAK/PI3K/AKT signaling. Cell Death Dis. 2016;7(4):e2201. doi:10.1038/cddis.2015.324
50. Maseki S, Ijichi K, Tanaka H, Fujii M, Hasegawa Y, Ogawa T, et al. Acquisition of EMT phenotype in the gefitinib-resistant cells of a head and neck squamous cell carcinoma cell line through Akt/GSK-3β/snail signalling pathway. Br J Cancer. 2012;106(6):1196 1204. doi:10.1038/bjc.2012.24
51. Sale MJ, Balmanno K, Saxena J, Ozono E, Wojdyla K, McIntyre RE, et al. MEK1/2 inhibitor withdrawal reverses acquired resistance driven by BRAF(V600E) amplification whereas KRAS(G13D) amplification promotes EMT-chemoresistance. Nat Commun. 2019;10(1):2030. doi:10.1038/s41467-019-09438-w
52. Sreekumar R, Al-Saihati H, Emaduddin M, Moutasim K, Mellone M, Patel A, et al. The ZEB2-dependent EMT transcriptional programme drives therapy resistance by activating nucleotide excision repair genes ERCC1 and ERCC4 in colorectal cancer. Mol Oncol. 2021;15(8):2065-2083. doi:10.1002/1878-0261.12965
53.Wang C, Li A, Yang S, Qiao R, Zhu X, Zhang J. CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-κB pathway. Biochem Biophys Res Commun. 2018;498:862 868. doi:10.1016/j.bbrc.2018.03.071
54. Sun J, Xu Z, Lv H, Wang Y, Wang L, Ni Y, Wang X, Hu C, Chen S, Teng F, Chen W, Cheng X. eIF5A2 regulates the resistance of gastric cancer cells to cisplatin via induction of EMT. Am J Transl Res. 2018;10(12):4269 4279. PMID: 30662669. PMCID: PMC6325524
55. Haslehurst AM, Koti M, Dharsee M, Nuin P, Evans K, Geraci J, et al. EMT transcription factors snail and slug directly contribute to cisplatin resistance in ovarian cancer. BMC Cancer. 2012;12:91. doi:10.1186/1471-2407-12-91
56. Morelli AP, Tortelli TC Jr, Mancini MCS, Pavan ICB, Silva LGS, Severino MB, et al. STAT3 contributes to cisplatin resistance, modulating EMT markers, and the mTOR signaling in lung adenocarcinoma. Neoplasia. 2021;23(10):1048 1058. doi:10.1016/j.neo.2021.08.003
57. Chen K, Xu J, Tong YL, Yan JF, Pan Y, Wang WJ, et al. Rab31 promotes metastasis and cisplatin resistance in stomach adenocarcinoma through Twist1-mediated EMT. Cell Death Dis. 2023;14(2):115. doi:10.1038/s41419-023-05596-4
58. Shen M, Xu Z, Xu W, Jiang K, Zhang F, Ding Q, et al. Inhibition of ATM reverses EMT and decreases metastatic potential of cisplatin-resistant lung cancer cells through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res. 2019;38(1):149. doi:10.1186/s13046-019-1161-8
59. Sinha S, Sharma S, Sharma A, Vora J, Shrivastava N. Sulforaphane-cisplatin combination inhibits the stemness and metastatic potential of TNBCs via down regulation of sirtuins-mediated EMT signaling axis. Phytomedicine. 2021;84:153492. doi:10.1016/j.phymed.2021.153492
60. Liang F, Ren C, Wang J, Wang S, Yang L, Han X, et al. The crosstalk between STAT3 and p53/RAS signaling controls cancer cell metastasis and cisplatin resistance via the Slug/MAPK/PI3K/AKT-mediated regulation of EMT and autophagy. Oncogenesis. 2019;8(10):59. doi:10.1038/s41389-019-0165-8
61. Xu T, Zhang J, Chen W, Pan S, Zhi X, Wen L, et al. ARK5 promotes doxorubicin resistance in hepatocellular carcinoma via epithelial–mesenchymal transition. Cancer Lett. 2016;377(2):140 148. doi:10.1016/j.canlet.2016.04.026.
62. Paramanantham A, Jung EJ, Kim HJ, Jeong BK, Jung JM, Kim GS, et al. Doxorubicin resistant TNBC cells exhibit rapid growth with cancer stem cell like properties and EMT phenotype, which can be transferred to parental cells through autocrine signaling. Int J Mol Sci. 2021;22(22):12438. doi:10.3390/ijms222212438
63. Wang S, Yan Y, Cheng Z, Hu Y, Liu T. Sotetsuflavone suppresses invasion and metastasis in non-small-cell lung cancer A549 cells by reversing EMT via the TNF-α/NF-κB and PI3K/AKT signaling pathway. Cell Death Discov. 2018;4:26. doi:10.1038/s41420-018-0026-9
64. Jiao D, Wang J, Lu W, Tang X, Chen J, Mou H, et al. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer. Mol Ther Oncolytics. 2016;3:16018. doi:10.1038/mto.2016.18
65. Wei R, Xiao Y, Song Y, Yuan H, Luo J, Xu W. FAT4 regulates the EMT and autophagy in colorectal cancer cells in part via the PI3K-AKT signaling axis. J Exp Clin Cancer Res. 2019;38(1):112. doi:10.1186/s13046-019-1043-0
66. Chi M, Liu J, Mei C, Shi, Y, Liu N, Jiang X, et al. TEAD4 functions as a prognostic biomarker and triggers EMT via PI3K/AKT pathway in bladder cancer. J Exp Clin Cancer Res. 2022;41(1):175. doi:10.1186/s13046-022-02377-3
67. Ha GH, Park JS, Breuer EKY. TACC3 promotes epithelial–mesenchymal transition (EMT) through the activation of PI3K/Akt and ERK signaling pathways. Cancer Lett. 2013;332(1):63 73. doi:10.1016/j.canlet.2013.01.013.
68. Wang SC, Chai DS, Chen CB, Wang ZY, Wang L. HPIP promotes thyroid cancer cell growth, migration and EMT through activating PI3K/AKT signaling pathway. Biomed Pharmacother. 2015;75:33 39. doi:10.1016/j.biopha.2015.08.027.
69. Meng J, Zhang XT, Liu XL, Fan L, Li C, Sun, Y, et al. WSTF promotes proliferation and invasion of lung cancer cells by inducing EMT via PI3K/Akt and IL-6/STAT3 signaling pathways. Cell Signal. 2016;28(11):1673 1682. doi:10.1016/j.cellsig.2016.07.008.
70. Cui P, Li H, Wang C, Liu Y, Zhang M, Yin Y, et al. UBE2T regulates epithelial–mesenchymal transition through the PI3K-AKT pathway and plays a carcinogenic role in ovarian cancer. J Ovarian Res. 2022;15(1):103. doi:10.1186/s13048-022-01034-9
71. Tang Z, Ding Y, Shen Q, Zhang C, Li J, Nazar M, et al. KIAA1199 promotes invasion and migration in non-small-cell lung cancer (NSCLC) via PI3K-Akt mediated EMT. J Mol Med (Berl). 2019;97(1):127 140. doi:10.1007/s00109-018-1721-y
72. Ghobashi AH, Kimani JW, Ladaika CA, O’Hagan HM. PTEN depletion reduces H3K27me3 levels to promote epithelial-to-mesenchymal transition in epithelial colorectal cancer cells. PLoS One. 2024;19(11):e0313769. doi:10.1371/journal.pone.0313769
73. Kim J, Kang HS, Lee YJ, Lee HJ, Yun J, Shin JH, et al. EGR1-dependent PTEN upregulation by 2-benzoyloxycinnamaldehyde attenuates cell invasion and EMT in colon cancer. Cancer Lett. 2014;349(1):35 44. doi:10.1016/j.canlet.2014.03.025.
74. Perumal E, So Youn K, Sun S, Seung-Hyun J, Suji M, Jieying L, et al C. PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells. Lung Cancer. 2019;130:25 34. doi:10.1016/j.lungcan.2019.01.013.
75. Gan L, Xu M, Hua R, Tan C, Zhang J, Gong Y, et al. The polycomb group protein EZH2 induces epithelial–mesenchymal transition and pluripotent phenotype of gastric cancer cells by binding to PTEN promoter. J Hematol Oncol. 2018;11(1):9. doi:10.1186/s13045-017-0547-3
76. Yokoi A, Minami M, Hashimura M, Oguri Y, Matsumoto T, Hasegawa Y, et al. PTEN overexpression and nuclear β-catenin stabilization promote morular differentiation through induction of epithelial–mesenchymal transition and cancer stem cell-like properties in endometrial carcinoma. Cell Commun Signal. 2022;20(1):181. doi:10.1186/s12964-022-00999-w
77. Wang H, Quah SY, Dong JM, Manser E, Tang JP, Zeng Q. PRL-3 Down-regulates PTEN Expression and Signals through PI3K to Promote Epithelial-Mesenchymal Transition. Cancer Res. 2007;67(7):2922 2926. doi:10.1158/0008-5472.can-06-3598
78. Xie S, Lu Z, Lin Y, Shen L, Yin C. Upregulation of PTEN suppresses invasion in Tca8113 tongue cancer cells through repression of epithelial–mesenchymal transition (EMT). Tumour Biol. 2016;37(5):6681 6689. doi:10.1007/s13277-015-4486-8
79. Bowen KA, Doan HQ, Zhou BP, Wang Q, Zhou Y, Rychahou PG, et al. PTEN loss induces epithelial—mesenchymal transition in human colon cancer cells. Anticancer Res. 2009;29(11):4439 4449. PMID: 20032390. PMCID: PMC2932708
80. Mulholland DJ, Kobayashi N, Ruscetti M, Zhi A, Tran LM, Huang J, et al. Pten Loss and RAS/MAPK Activation Cooperate to Promote EMT and Metastasis Initiated from Prostate Cancer Stem/Progenitor Cells. Cancer Res. 2012;72(7):1878 1889. doi:10.1158/0008-5472.can-11-3132
81. Wang T, Lin F, Sun X, Jiang L, Mao R, Zhou S, et al. HOXB8 enhances the proliferation and metastasis of colorectal cancer cells by promoting EMT via STAT3 activation. Cancer Cell Int. 2019;19:3. doi:10.1186/s12935-018-0717-6
82. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY. Paracrine IL-6 signaling mediates the effects of pancreatic stellate cells on epithelial-mesenchymal transition via Stat3/Nrf2 pathway in pancreatic cancer cells. Biochim Biophys Acta Gen Subj. 2017;1861(2):296 306. doi:10.1016/j.bbagen.2016.10.006.
83. Ma Q, Chen F, Liu Y, Wu K, Bu Z, Qiu C, et al. Integrated transcriptomic and proteomic analysis reveals Guizhi-Fuling Wan inhibiting STAT3-EMT in ovarian cancer progression. Biomed Pharmacother. 2024;170:116016. doi:10.1016/j.biopha.2023.116016.
84. Park SJ, Jung HJ. Bufotalin Suppresses Proliferation and Metastasis of Triple-Negative Breast Cancer Cells by Promoting Apoptosis and Inhibiting the STAT3/EMT Axis. Molecules. 2023;28(19):6783. doi:10.3390/molecules28196783
85. Guo H, Hu Z, Yang X, Yuan Z, Gao Y, Chen J, et al. STAT3 inhibition enhances gemcitabine sensitivity in pancreatic cancer by suppressing EMT, immune escape and inducing oxidative stress damage. Int Immunopharmacol. 2023;123:110709. doi:10.1016/j.intimp.2023.110709.
86. Chen G, Tang N, Wang C, Xiao L, Yu M, Zhao L, et al. TNF-α-inducing protein of Helicobacter pylori induces epithelial-mesenchymal transition (EMT) in gastric cancer cells through activation of IL-6/STAT3 signaling pathway. Biochem Biophys Res Commun. 2017;484(2):311 317. doi:10.1016/j.bbrc.2017.01.110.
87. Wang LN, Zhang ZT, Wang L, Wei HX, Zhang T, Zhang LM, et al. TGF-β1/SH2B3 axis regulates anoikis resistance and EMT of lung cancer cells by modulating JAK2/STAT3 and SHP2/Grb2 signaling pathways. Cell Death Dis. 2022;13(5):472. doi:10.1038/s41419-022-04890-x
88. Xiong H, Hong J, Du W, Lin YW, Ren LL, Wang YC, et al. Roles of STAT3 and ZEB1 Proteins in E-cadherin Down-regulation and Human Colorectal Cancer Epithelial-Mesenchymal Transition. J Biol Chem. 2012;287(8):5819 5832. doi:10.1074/jbc.M111.295964.
89. Zhang X, Sai B, Wang F, Wang L, Wang Y, Zheng L, et al. Hypoxic BMSC-derived exosomal miRNAs promote metastasis of lung cancer cells via STAT3-induced EMT. Mol Cancer. 2019;18(1):40. doi:10.1186/s12943-019-0959-5
90. Lin WH, Chang YW, Hong MX, Hsu TC, Lee KC, Lin C, et al. STAT3 phosphorylation at Ser727 and Tyr705 differentially regulates the EMT–MET switch and cancer metastasis. Oncogene. 2021;40(4):791 805. doi:10.1038/s41388-020-01566-8
91. Ahmad A, Sarkar SH, Bitar B, Ali S, Aboukameel A, Sethi S, et al. Garcinol Regulates EMT and Wnt Signaling Pathways In Vitro and In Vivo, Leading to Anticancer Activity against Breast Cancer Cells. Mol Cancer Ther. 2012;11(10):2193 2201. doi:10.1158/1535-7163.mct-12-0232-t
92. Jiang L, Yang YD, Fu L, Xu W, Liu D, Liang Q, et al. CLDN3 inhibits cancer aggressiveness via Wnt-EMT signaling and is a potential prognostic biomarker for hepatocellular carcinoma. Oncotarget. 2014;5(17):7663 7676. doi:10.18632/oncotarget.2288
93. Li Q, Lai Q, He C, Fang Y, Yan Q, Zhang Y, et al. RUNX1 promotes tumour metastasis by activating the Wnt/β-catenin signalling pathway and EMT in colorectal cancer. J Exp Clin Cancer Res. 2019;38(1):334. doi:10.1186/s13046-019-1330-9
94. Yang S, Liu Y, Li MY, Ng CSH, Yang SL, Wang S, et al. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol Cancer. 2017;16(1):124. doi:10.1186/s12943-017-0700-1
95. Tang Q, Chen J, Di Z, Yuan W, Zhou Z, Liu Z, et al. TM4SF1 promotes EMT and cancer stemness via the Wnt/β-catenin/SOX2 pathway in colorectal cancer. J Exp Clin Cancer Res. 2020;39(1):232. doi:10.1186/s13046-020-01690-z
96. Mosa MH, Michels BE, Menche C, Nicolas AM, Darvishi T, Greten FR, et al. A Wnt-Induced Phenotypic Switch in Cancer-Associated Fibroblasts Inhibits EMT in Colorectal Cancer. Cancer Res. 2020;80(24):5569 5582. doi:10.1158/0008-5472.can-20-0263
97. Ma X, Wang B, Wang X, Luo Y, Fan W. NANOGP8 is the key regulator of stemness, EMT, Wnt pathway, chemoresistance, and other malignant phenotypes in gastric cancer cells. PLoS One. 2018;13(4):e0192436. doi:10.1371/journal.pone.0192436
98. Jia S, Qu T, Wang X, Feng M, Yang Y, Feng X, et al. KIAA1199 promotes migration and invasion by Wnt/β-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer. PLoS One. 2017;12(4):e0175058. doi:10.1371/journal.pone.0175058
99. Hu W, Wang Z, Zhang S, Lu X, Wu J, Yu K, et al. IQGAP1 promotes pancreatic cancer progression and epithelial-mesenchymal transition (EMT) through Wnt/β-catenin signaling. Sci Rep. 2019;9(1):7539. doi:10.1038/s41598-019-44048-y
100. Yook JI, Li XY, Ota I, Hu C, Kim HS, Kim NH, et al. A Wnt–Axin2–GSK3β cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol. 2006;8(12):1398 1406. doi:10.1038/ncb1508
101. Liu F, Xia Z, Zhang M, Ding J, Feng Y, Wu J, et al. SMARCAD1 Promotes Pancreatic Cancer Cell Growth and Metastasis through Wnt/β-catenin-Mediated EMT. Int J Biol Sci. 2019;15(3):636 646. doi:10.7150/ijbs.29562
102. Li H, Wang Z, Zhang W, Qian K, Liao G, Xu W, et al. VGLL4 inhibits EMT in part through suppressing Wnt/β-catenin signaling pathway in gastric cancer. Med Oncol. 2015;32(3):83. doi:10.1007/s12032-015-0539-5
103. Basu B, Karmakar S, Basu M, Ghosh MK. USP7 imparts partial EMT state in colorectal cancer by stabilizing the RNA helicase DDX3X and augmenting Wnt/β-catenin signaling. Biochim Biophys Acta Mol Cell Res. 2023;1870(4):119446. doi:10.1016/j.bbamcr.2023.119446
104. Xie SL, Fan S, Zhang SY, Chen WX, Li QX, Pan GK, et al. SOX8 regulates cancer stem-like properties and cisplatin-induced EMT in tongue squamous cell carcinoma by acting on the Wnt/β-catenin pathway. Int J Cancer. 2018;142(6):1252 1265. doi:10.1002/ijc.31134.
105. DiMeo TA, Anderson K, Phadke P, Feng C, Perou CM, Naber S, et al. A Novel Lung Metastasis Signature Links Wnt Signaling with Cancer Cell Self-Renewal and Epithelial-Mesenchymal Transition in Basal-like Breast Cancer. Cancer Res. 2009;69(13):5364 5373. doi:10.1158/0008-5472.can-08-4135
106. Duan H, Yan Z, Chen W, Wu Y, Han J, Guo H, et al. TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β catenin signaling inhibitors DKK1 and SFRP2. Gynecol Oncol. 2017;147(2):408 417. doi:10.1016/j.ygyno.2017.08.010.
107. Gu Y, Wang Q, Guo K, Qin W, Liao W, Wang S, et al. TUSC3 promotes colorectal cancer progression and epithelial mesenchymal transition (EMT) through WNT/β catenin and MAPK signalling. J Pathol. 2016;239(1):60 71. doi:10.1002/path.4697.
108. Kang AR, Kim JL, Kim Y, Kang S, Oh SC, Park JK. A novel RIP1 mediated canonical WNT signaling pathway that promotes colorectal cancer metastasis via β catenin stabilization induced EMT. Cancer Gene Ther. 2023;30(10):1403 1413. doi:10.1038/s41417-023-00647-6
109. Shin SY, Rath O, Zebisch A, Choo SM, Kolch W, Cho KH. Functional roles of multiple feedback loops in extracellular signal regulated kinase and Wnt signaling pathways that regulate epithelial mesenchymal transition. Cancer Res. 2010;70(17):6715 6724. doi:10.1158/0008-5472.can-10-1377
110. Li Y, Liu R, Han X, Xu W, Liu Y. PLAGL2 increases adriamycin resistance and EMT in breast cancer cells by activating the Wnt pathway. Genes Genomics. 2023;45(1):49 57. doi:10.1007/s13258-022-01330-0
111. Chen Z, Wu W, Huang Y, Xie L, Li Y, Chen H, et al. RCC2 promotes breast cancer progression through regulation of Wnt signaling and inducing EMT. J Cancer. 2019;10(27):6837 6847. doi:10.7150/jca.36430
112. Li Y, Liu C, Zhang X, Huang X, Liang S, Xing F, et al. CCT5 induces epithelial mesenchymal transition to promote gastric cancer lymph node metastasis by activating the Wnt/β catenin signalling pathway. Br J Cancer. 2022;126(12):1684 1694. doi:10.1038/s41416-022-01747-0
113. Sun L, Shi C, Liu S, Zhang E, Yan L, Ji C, et al. Overexpression of NuSAP1 is predictive of an unfavourable prognosis and promotes proliferation and invasion of triple negative breast cancer cells via the Wnt/β catenin/EMT signalling axis. Gene. 2020;747:144657. doi:10.1016/j.gene.2020.144657.
114. Yang N, Hui L, Wang Y, Yang H, Jiang X. Overexpression of SOX2 promotes migration, invasion, and epithelial mesenchymal transition through the Wnt/β catenin pathway in laryngeal cancer Hep 2 cells. Tumour Biol. 2014;35(8):7965 7973. doi:10.1007/s13277-014-2045-3
115. Zhang X, Li H, Wang Y, Zhao H, Wang Z, Chan FL. Nuclear receptor NURR1 functions to promote stemness and epithelial mesenchymal transition in prostate cancer via its targeting of Wnt/β catenin signaling pathway. Cell Death Dis. 2024;15(3):234. doi:10.1038/s41419-024-06621-w
116. Sohn SH, Kim B, Sul HJ, Kim YJ, Kim HS, Kim H, et al. INC280 inhibits Wnt/β catenin and EMT signaling pathways and induces apoptosis in diffuse gastric cancer positive for c MET amplification. BMC Res Notes. 2019;12(1):125. doi:10.1186/s13104-019-4163-x
117. Shao M, Wang L, Zhang Q, Wang T, Wang S. STMN2 overexpression promotes cell proliferation and EMT in pancreatic cancer mediated by WNT/β catenin signaling. Cancer Gene Ther. 2023;30(3):472 480. doi:10.1038/s41417-022-00568-w
118. Zhang LZ, Huang LY, Huang AL, Liu JX, Yang F. CRIP1 promotes cell migration, invasion and epithelial mesenchymal transition of cervical cancer by activating the Wnt/β catenin signaling pathway. Life Sci. 2018;207:420 427. doi:10.1016/j.lfs.2018.05.054.
119. Wang H, Deng G, Ai M, Xu Z, Mou T, Yu J, et al. Hsp90ab1 stabilizes LRP5 to promote epithelial mesenchymal transition via activating AKT and Wnt/β catenin signaling pathways in gastric cancer progression. Oncogene. 2019;38(9):1489 1507. doi:10.1038/s41388-018-0532-5
120. Zhou Q, Chen S, Lu M, Luo Y, Wang G, Xiao Y, et al. EFEMP2 suppresses epithelial mesenchymal transition via Wnt/β catenin signaling pathway in human bladder cancer. Int J Biol Sci. 2019;15(10):2139 2155. doi:10.7150/ijbs.35541
121. Sun J, Yang X, Zhang R, Liu S, Gan X, Xi X, et al. GOLPH3 induces epithelial mesenchymal transition via Wnt/β catenin signaling pathway in epithelial ovarian cancer. Cancer Med. 2017;6(4):834 844. doi:10.1002/cam4.1040
122. Ali A, Wang Z, Fu J, Ji L, Liu J, Li L, et al. Differential regulation of the REGγ proteasome pathway by p53/TGF β signalling and mutant p53 in cancer cells. Nat Commun. 2013;4:2667. doi:10.1038/ncomms3667
123. Matsushita M, Matsuzaki K, Date M, Watanabe T, Shibano K, Nakagawa T, et al. Down regulation of TGF beta receptors in human colorectal cancer: implications for cancer development. Br J Cancer. 1999;80(1 2):194 205. doi:10.1038/sj.bjc.6690339
124. Lainé A, Labiad O, Hernandez Vargas H, This S, Sanlaville A, Léon S, et al. Regulatory T cells promote cancer immune escape through integrin αvβ8 mediated TGF β activation. Nat Commun. 2021;12(1):6228. doi:10.1038/s41467-021-26352-2
125. Qin J, Wu SP, Creighton CJ, Dai F, Xie X, Cheng CM, et al. COUP TFII inhibits TGF β induced growth barrier to promote prostate tumorigenesis. Nature. 2013;493(7431):236 240. doi:10.1038/nature11674
126. Siegel PM, Massagué J. Cytostatic and apoptotic actions of TGF beta in homeostasis and cancer. Nat Rev Cancer. 2003;3(11):807 821. doi:10.1038/nrc1208
127. Tauriello DVF, Sancho E, Batlle E. Overcoming TGFβ mediated immune evasion in cancer. Nat Rev Cancer. 2022;22(1):25 44. doi:10.1038/s41568-021-00413-6
128. Chakravarthy A, Khan L, Bensler NP, Bose P, De Carvalho DD. TGF β associated extracellular matrix genes link cancer associated fibroblasts to immune evasion and immunotherapy failure. Nat Commun. 2018;9(1):4692. doi:10.1038/s41467-018-06654-8
129. Li S, Liu M, Do MH, Chou C, Stamatiades EG, Nixon BG, et al. Cancer immunotherapy via targeted TGF β signalling blockade in TH cells. Nature. 2020;587(7832):121 125. doi:10.1038/s41586-020-2850-3
130. Yingling JM, Blanchard KL, Sawyer JS. Development of TGF beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov. 2004;3(12):1011 1022. doi:10.1038/nrd1580
131. Visan I. Targeting TGF β in cancer. Nat Immunol. 2018;19,316. doi:10.1038/s41590-018-0076-4
132. Bierie B, Moses HL. Tumour microenvironment: TGF beta-the molecular Jekyll and Hyde of cancer. Nat Rev Cancer. 2006;6(7):506 520. doi:10.1038/nrc1926
133. Derynck R, Akhurst RJ, Balmain A. TGF beta signaling in tumor suppression and cancer progression. Nat Genet. 2001;29(2):117 129. doi:10.1038/ng1001-117
134. Liu M, Kuo F, Capistrano KJ, Kang D, Nixon BG, Shi W, et al. TGF β suppresses type 2 immunity to cancer. Nature. 2020;587(7832):115 120. doi:10.1038/s41586-020-2836-1
135. Ahuja N, Ashok C, Natua S, Pant D, Cherian A, Pandkar MR, et al. Hypoxia induced TGF β RBFOX2 ESRP1 axis regulates human MENA alternative splicing and promotes EMT in breast cancer. NAR Cancer. 2020;2(3):zcaa021. doi:10.1093/narcan/zcaa021
136. Nasarre P, Gemmill RM, Potiron VA, Roche J, Lu X, Barón AE, et al. Neuropilin 2 is upregulated in lung cancer cells during TGF β1 induced epithelial mesenchymal transition. Cancer Res. 2013;73(23):7111 7121. doi:10.1158/0008-5472.can-13-1755
137. Chen M, Wu C, Fu Z, Liu S. ICAM1 promotes bone metastasis via integrin mediated TGF β/EMT signaling in triple negative breast cancer. Cancer Sci. 2022;113(11):3751 3765. doi:10.1111/cas.15532.
138. Shen L, Qu X, Ma Y, Zheng J, Chu D, Liu B, et al. Tumor suppressor NDRG2 tips the balance of oncogenic TGF β via EMT inhibition in colorectal cancer. Oncogenesis. 2014;3(2):e86. doi:10.1038/oncsis.2013.48
139. Oktyabri D, Tange S, Terashima M, Ishimura A, Suzuki T. EED regulates epithelial mesenchymal transition of cancer cells induced by TGF β. Biochem Biophys Res Commun. 2014;453(1):124 130. doi:10.1016/j.bbrc.2014.09.082.
140. Sun Z, Su Z, Zhou Z, Wang S, Wang Z, Tong X, et al. RNA demethylase ALKBH5 inhibits TGF β induced EMT by regulating TGF β/SMAD signaling in non small cell lung cancer. FASEB J. 2022;36(5):e22283. doi:10.1096/fj.202200005RR.
141. Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V, Hagikura K, et al. TGF β1 induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21 mediated chemotaxis. Oncogene. 2016;35(6):748 760. doi:10.1038/onc.2015.133
142. Ping Q, Wang C, Cheng X, Zhong Y, Yan R, Yang M, et al. TGF β1 dominates stromal fibroblast mediated EMT via the FAP/VCAN axis in bladder cancer cells. J Transl Med. 2023;21(1):475. doi:10.1186/s12967-023-04303-3
143. Fernandes S, Oliver De La Cruz J, Morazzo S, Niro F, Cassani M, Duríková H, et al. TGF β induces matrisome pathological alterations and EMT in patient derived prostate cancer tumoroids. Matrix Biol. 2024;125:12 30. doi:10.1016/j.matbio.2023.11.001.
144. Zhang X, Zhang P, Shao M, Zang X, Zhang J, Mao F, et al. SALL4 activates TGF-β/SMAD signaling pathway to induce EMT and promote gastric cancer metastasis. Cancer Manag Res. 2018;10:4459 4470. doi:10.2147/CMAR.S177373
145. Zhao X, Wu X, Qian M, Song Y, Wu D, Zhang W. Knockdown of TGF β1 expression in human umbilical cord mesenchymal stem cells reverts their exosome mediated EMT promoting effect on lung cancer cells. Cancer Lett. 2018;428:34 44. doi:10.1016/j.canlet.2018.04.026.
146. Chen XH, Liu ZC, Zhang G, Wei W, Wang XX, Wang H, et al. TGF β and EGF induced HLA I downregulation is associated with epithelial mesenchymal transition (EMT) through upregulation of snail in prostate cancer cells. Mol Immunol. 2015;65(1):34 42. doi:10.1016/j.molimm.2014.12.017.
147. Zhang H, Liu L, Wang Y, Zhao G, Xie R, Liu C, et al. KLF8 involves in TGF beta induced EMT and promotes invasion and migration in gastric cancer cells. J Cancer Res Clin Oncol. 2013;139(6):1033 1042. doi:10.1007/s00432-012-1363-3
148. Gao J, Zhu Y, Nilsson M, Sundfeldt K. TGF β isoforms induce EMT independent migration of ovarian cancer cells. Cancer Cell Int. 2014;14(1):72. doi:10.1186/s12935-014-0072-1
149. Kim BN, Ahn DH, Kang N, Yeo CD, Kim YK, Lee KY, et al. TGF β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci Rep. 2020;10(1):10597. doi:10.1038/s41598-020-67325-7
150. Yu Y, Xiao CH, Tan LD, Wang QS, Li XQ, Feng YM. Cancer associated fibroblasts induce epithelial mesenchymal transition of breast cancer cells through paracrine TGF β signalling. Br J Cancer. 2014;110(3):724 732. doi:10.1038/bjc.2013.768
151. Wu YY, Peck K, Chang YL, Pan SH, Cheng YF, Lin JC, et al. SCUBE3 is an endogenous TGF β receptor ligand and regulates the epithelial mesenchymal transition in lung cancer. Oncogene. 2011;30(34):3682 3693. doi:10.1038/onc.2011.85
152. Zhang Z, Xu Y. FZD7 accelerates hepatic metastases in pancreatic cancer by strengthening EMT and stemness associated with TGF β/SMAD3 signaling. Mol Med. 2022;28(1):82. doi:10.1186/s10020-022-00509-1
153. Hirakawa M, Takimoto R, Tamura F, Yoshida M, Ono M, Murase K, et al. Fucosylated TGF β receptors transduces a signal for epithelial mesenchymal transition in colorectal cancer cells. Br J Cancer. 2014;110(1):156 163. doi:10.1038/bjc.2013.699
154. Hiraga R, Kato M, Miyagawa S, Kamata T. Nox4 derived ROS signaling contributes to TGF β induced epithelial mesenchymal transition in pancreatic cancer cells. Anticancer Res. 2013;33(10):4431 4438. PMID: 24123012
155. Cardenas H, Vieth E, Lee J, Segar M, Liu Y, Nephew KP, et al. TGF β induces global changes in DNA methylation during the epithelial to mesenchymal transition in ovarian cancer cells. Epigenetics. 2014;9(11):1461 1472. doi:10.4161/15592294.2014.971608
156. Ko H, So Y, Jeon H, Jeong MH, Choi HK, Ryu SH, et al. TGF β1 induced epithelial mesenchymal transition and acetylation of Smad2 and Smad3 are negatively regulated by EGCG in human A549 lung cancer cells. Cancer Lett. 2013;335(1):205 213. doi:10.1016/j.canlet.2013.02.018
157. Araki K, Shimura T, Suzuki H, Tsutsumi S, Wada W, Yajima T, et al. E/N cadherin switch mediates cancer progression via TGF β induced epithelial to mesenchymal transition in extrahepatic cholangiocarcinoma. Br J Cancer. 2011;105(12):1885 1893. doi:10.1038/bjc.2011.452
158. Li Y, Wang P, Ye D, Bai X, Zeng X, Zhao Q, et al. IGHG1 induces EMT in gastric cancer cells by regulating TGF β/SMAD3 signaling pathway. J Cancer. 2021;12(12):3458 3467. doi:10.7150/jca.56056
159. Sethi N, Kang Y. Notch signalling in cancer progression and bone metastasis. Br J Cancer. 2011;105(12):1805 1810. doi:10.1038/bjc.2011.497
160. Roper N, Velez MJ, Chiappori A, Kim YS, Wei JS, Sindiri S, et al. Notch signaling and efficacy of PD 1/PD L1 blockade in relapsed small cell lung cancer. Nat Commun. 2021;12(1):3880. doi:10.1038/s41467-021-24164-y
161. Ranganathan P, Weaver KL, Capobianco AJ. Notch signalling in solid tumours: a little bit of everything but not all the time. Nat Rev Cancer. 2011;11(5):338 351. doi:10.1038/nrc3035
162. Dotto GP. Crosstalk of Notch with p53 and p63 in cancer growth control. Nat Rev Cancer. 2009;9(8):587 595. doi:10.1038/nrc2675
163. Takebe N, Harris PJ, Warren RQ, Ivy SP. Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 2011;8(2):97 106. doi:10.1038/nrclinonc.2010.196
164. Majumder S, Crabtree JS, Golde TE, Minter LM, Osborne BA, Miele L. Targeting Notch in oncology: the path forward. Nat Rev Drug Discov. 2021;20(2):125 144. doi:10.1038/s41573-020-00091-3
165. Lim JS, Ibaseta A, Fischer MM, Cancilla B, O’Young G, Cristea S, et al. Intratumoural heterogeneity generated by Notch signalling promotes small cell lung cancer. Nature. 2017;545(7654):360 364. doi:10.1038/nature22323
166. Takebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, et al. Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol. 2015;12(8):445 464. doi:10.1038/nrclinonc.2015.61
167. Rampias T, Vgenopoulou P, Avgeris M, Polyzos A, Stravodimos K, Valavanis C, et al. A new tumor suppressor role for the Notch pathway in bladder cancer. Nat Med. 2014;20(10):1199 1205. doi:10.1038/nm.3678
168. Maraver A, Fernandez Marcos PJ, Cash TP, Mendez Pertuz M, Duenas M, Maietta P, et al. NOTCH pathway inactivation promotes bladder cancer progression. J Clin Invest. 2015;125(2):824 830. doi:10.1172/JCI78185
169. Fender AW, Nutter JM, Fitzgerald TL, Bertrand FE, Sigounas G. Notch 1 promotes stemness and epithelial to mesenchymal transition in colorectal cancer. J Cell Biochem. 2015;116(11):2517 2527. doi:10.1002/jcb.25196
170. Zang M, Hu L, Fan ZY, Wang HX, Zhu ZL, Cao S, et al. Luteolin suppresses gastric cancer progression by reversing epithelial mesenchymal transition via suppression of the Notch signaling pathway. J Transl Med. 2017;15(1):52. doi:10.1186/s12967-017-1151-6
171. Bocci F, Jolly MK, Tripathi SC, Aguilar M, Hanash SM, Levine H, Onuchic JN. Numb prevents a complete epithelial mesenchymal transition by modulating Notch signalling. J R Soc Interface. 2017;14(136):20170512. doi:10.1098/rsif.2017.0512
172. Zhang L, Sha J, Yang G, Huang X, Bo J, Huang Y. Activation of Notch pathway is linked with epithelial mesenchymal transition in prostate cancer cells. Cell Cycle. 2017;16(10):999 1007. doi:10.1080/15384101.2017.1312237
173. Wang Z, Li Y, Kong D, Banerjee S, Ahmad A, Azmi AS, et al. Acquisition of epithelial mesenchymal transition phenotype of gemcitabine resistant pancreatic cancer cells is linked with activation of the Notch signaling pathway. Cancer Res. 2009;69(6):2400 2407. doi:10.1158/0008-5472.can-08-4312
174. Zhang J, Kuang Y, Wang Y, Xu Q, Ren Q. Notch 4 silencing inhibits prostate cancer growth and EMT via the NF κB pathway. Apoptosis. 2017;22(6):877 884. doi:10.1007/s10495-017-1368-0
175. Zhou J, Jain S, Azad AK, Xu X, Yu HC, Xu Z, et al. Notch and TGFβ form a positive regulatory loop and regulate EMT in epithelial ovarian cancer cells. Cell Signal. 2016;28(8):838 849. doi:10.1016/j.cellsig.2016.03.016.
176. Keysar SB, Le PN, Anderson RT, Morton JJ, Bowles DW, Paylor JJ, et al. Hedgehog signaling alters reliance on EGF receptor signaling and mediates anti EGFR therapeutic resistance in head and neck cancer. Cancer Res. 2013;73(11):3381 3392. doi:10.1158/0008-5472.can-12-4047
177. Yue D, Li H, Che J, Zhang Y, Tseng HHK, Jin JQ, et al. Hedgehog/Gli promotes epithelial mesenchymal transition in lung squamous cell carcinomas. J Exp Clin Cancer Res. 2014;33(1):34. doi:10.1186/1756-9966-33-34
178. Zhang K, Sun C, Zhang Q, Wang X. Sonic hedgehog Gli1 signals promote epithelial mesenchymal transition in ovarian cancer by mediating PI3K/AKT pathway. Med Oncol. 2015;32(1):368. doi:10.1007/s12032-014-0368-y
179. Xu X, Zhou Y, Xie C, Wei S, Gan H, He S, et al. Genome wide screening reveals an EMT molecular network mediated by Sonic hedgehog Gli1 signaling in pancreatic cancer cells. PLoS One. 2012;7(8):e43119. doi:10.1371/journal.pone.0043119
180. Sun M, Zhang N, Wang X, Li Y, Qi W, Zhang H, et al. Hedgehog pathway is involved in nitidine chloride induced inhibition of epithelial mesenchymal transition and cancer stem cell like properties in breast cancer cells. Cell Biosci. 2016;6:44. doi:10.1186/s13578-016-0104-8
181. Lei J, Ma J, Ma Q, Li X, Liu H, Xu Q, et al. Hedgehog signaling regulates hypoxia induced epithelial to mesenchymal transition and invasion in pancreatic cancer cells via a ligand independent manner. Mol Cancer. 2013;12:66. doi:10.1186/1476-4598-12-66
182. Wang F, Ma L, Zhang Z, Liu X, Gao H, Zhuang Y, et al. Hedgehog signaling regulates epithelial mesenchymal transition in pancreatic cancer stem like cells. J Cancer. 2016;7(4):408 417. doi:10.7150/jca.13305
183. Yoo YA, Kang MH, Lee HJ, Kim B, Park JK, Kim HK, et al. Sonic hedgehog pathway promotes metastasis and lymphangiogenesis via activation of Akt, EMT, and MMP 9 pathway in gastric cancer. Cancer Res. 2011;71(22):7061 7070. doi:10.1158/0008-5472.can-11-1338
184. Ahmad A, Maitah MY, Ginnebaugh KR, Li Y, Bao B, Gadgeel SM, et al. Inhibition of Hedgehog signaling sensitizes NSCLC cells to standard therapies through modulation of EMT regulating miRNAs. J Hematol Oncol. 2013;6(1):77. doi:10.1186/1756-8722-6-77
185. Xu X, Su B, Xie C, Wei S, Zhou Y, Liu H, et al. Sonic hedgehog Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One. 2014 Jul 29;9(7):e96441. doi:10.1371/journal.pone.0096441
186. Islam SS, Mokhtari RB, Noman AS, Uddin M, Rahman MZ, Azadi MA, et al. Sonic hedgehog (Shh) signaling promotes tumorigenicity and stemness via activation of epithelial to mesenchymal transition (EMT) in bladder cancer. Mol Carcinog. 2016;55(5):537 551. doi:10.1002/mc.22300
187. Yamamichi F, Shigemura K, Behnsawy HM, Meligy FY, Huang WC, Li X, et al. Sonic hedgehog and androgen signaling in tumor and stromal compartments drives epithelial mesenchymal transition in prostate cancer. Scand J Urol. 2014;48(6):523 532. doi:10.3109/21681805.2014.898336
188. Batsaikhan BE, Yoshikawa K, Kurita N, Iwata T, Takasu C, Kashihara H, et al. Cyclopamine decreased the expression of Sonic Hedgehog and its downstream genes in colon cancer stem cells. Anticancer Res. 2014 Nov;34(11):6339-44. PMID: 25368233
189. Ke B, Wang XN, Liu N, Li B, Wang XJ, Zhang RP, et al. Sonic Hedgehog/Gli1 signaling pathway regulates cell migration and invasion via induction of epithelial to mesenchymal transition in gastric cancer. J Cancer. 2020;11(13):3932 3943. doi:10.7150/jca.42900
190. Cao L, Xiao X, Lei J, Duan W, Ma Q, Li W. Curcumin inhibits hypoxia induced epithelial mesenchymal transition in pancreatic cancer cells via suppression of the hedgehog signaling pathway. Oncol Rep. 2016;35(6):3728 3734. doi:10.3892/or.2016.4709
191. Li X, Ma Q, Xu Q, Liu H, Lei J, Duan W, et al. SDF 1/CXCR4 signaling induces pancreatic cancer cell invasion and epithelial mesenchymal transition in vitro through non canonical activation of Hedgehog pathway. Cancer Lett. 2012;322(2):169 176. doi:10.1016/j.canlet.2012.02.035.
192. Huber MA, Azoitei N, Baumann B, Grünert S, Sommer A, Pehamberger H, et al. NF kappaB is essential for epithelial mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest. 2004;114(4):569 581. doi:10.1172/JCI21358
193. Pires BRB, Mencalha AL, Ferreira GM, de Souza WF, Morgado Díaz JA, Maia AM, et al. NF kappaB is involved in the regulation of EMT genes in breast cancer cells. PLoS One. 2017;12(1):e0169622. doi:10.1371/journal.pone.0169622
194. Zhou P, Wang C, Hu Z, Chen W, Qi W, Li A. Genistein induces apoptosis of colon cancer cells by reversal of epithelial to mesenchymal transition via a Notch1/NF κB/Slug/E cadherin pathway. BMC Cancer. 2017;17(1):813. doi:10.1186/s12885-017-3829-9
195. Luo M, Hou L, Li J, Shao S, Huang S, Meng D, et al. VEGF/NRP 1 axis promotes progression of breast cancer via enhancement of epithelial mesenchymal transition and activation of NF κB and β catenin. Cancer Lett. 2016;373(1):1 11. doi:10.1016/j.canlet.2016.01.010.
196. Li QQ, Chen ZQ, Cao XX, Xu JD, Xu JW, Chen YY, et al. Involvement of NF κB/miR 448 regulatory feedback loop in chemotherapy induced epithelial mesenchymal transition of breast cancer cells. Cell Death Differ. 2011;18(1):16 25. doi:10.1038/cdd.2010.103
197. Maier HJ, Schmidt Strassburger U, Huber MA, Wiedemann EM, Beug H, Wirth T. NF kappaB promotes epithelial mesenchymal transition, migration and invasion of pancreatic carcinoma cells. Cancer Lett. 2010;295(2):214 228. doi:10.1016/j.canlet.2010.03.003.
198. Cichon MA, Radisky DC. ROS induced epithelial mesenchymal transition in mammary epithelial cells is mediated by NF κB dependent activation of Snail. Oncotarget. 2014;5(9):2827 2838. doi:10.18632/oncotarget.1940
199. Nomura A, Majumder K, Giri B, Dauer P, Dudeja V, Roy S, et al. Inhibition of NF kappa B pathway leads to deregulation of epithelial mesenchymal transition and neural invasion in pancreatic cancer. Lab Invest. 2016;96(12):1268 1278. doi:10.1038/labinvest.2016.109
200. Zhang L, Wang D, Li Y, Liu Y, Xie X, Wu Y, et al. CCL21/CCR7 axis contributed to CD133+ pancreatic cancer stem like cell metastasis via EMT and Erk/NF κB pathway. PLoS One. 2016;11(8):e0158529. doi:10.1371/journal.pone.0158529
201. Chua HL, Bhat Nakshatri P, Clare SE, Morimiya A, Badve S, Nakshatri H. NF kappaB represses E cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB 1 and ZEB 2. Oncogene. 2007;26(5):711 724. doi:10.1038/sj.onc.1209808
202. Wang J, Tian L, Khan MN, Zhang L, Chen Q, Zhao Y, et al. Ginsenoside Rg3 sensitizes hypoxic lung cancer cells to cisplatin via blocking of NF κB mediated epithelial mesenchymal transition and stemness. Cancer Lett. 2018;415:73 85. doi:10.1016/j.canlet.2017.11.037.
203. Esparza López J, Alvarado Munoz JF, Escobar Arriaga E, Ulloa Aguirre A, Ibarra Sánchez MJ. Metformin reverses mesenchymal phenotype of primary breast cancer cells through STAT3/NF κB pathways. BMC Cancer. 2019;19(1):728. doi:10.1186/s12885-019-5945-1
204. Rigillo G, Belluti S, Campani V, Ragazzini G, Ronzio M, Miserocchi G, et al. The NF Y splicing signature controls hybrid EMT and ECM related pathways to promote aggressiveness of colon cancer. Cancer Lett. 2023;567:216262. doi:10.1016/j.canlet.2023.216262.
205. Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, et al. CD133 modulates HIF 1α expression under hypoxia in EMT phenotype pancreatic cancer stem like cells. Int J Mol Sci. 2016;17(7):1025. doi:10.3390/ijms17071025
206. Cheng ZX, Sun B, Wang SJ, Gao Y, Zhang YM, Zhou HX, et al. Nuclear factor κB dependent epithelial to mesenchymal transition induced by HIF 1α activation in pancreatic cancer cells under hypoxic conditions. PLoS One. 2011;6(8):e23752. doi:10.1371/journal.pone.0023752
207. Huang YN, Xu YY, Ma Q, Li MQ, Guo JX, Wang X, et al. Dextran sulfate effects EMT of human gastric cancer cells by reducing HIF 1α/TGF β. J Cancer. 2021;12(11):3367 3377. doi:10.7150/jca.55550
208. Zhao JH, Luo Y, Jiang YG, He DL, Wu CT. Knockdown of β catenin through shRNA causes a reversal of EMT and metastatic phenotypes induced by HIF 1α. Cancer Invest. 2011;29(6):377 382. doi:10.3109/07357907.2010.512595
209. Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, et al. HIF 1α promotes epithelial mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One. 2015;10(6):e0129603. doi:10.1371/journal.pone.0129603
210. Liu T, Zhao L, Zhang Y, Chen W, Liu D, Hou H, et al. Ginsenoside 20(S) Rg3 targets HIF 1α to block hypoxia induced epithelial mesenchymal transition in ovarian cancer cells. PLoS One. 2014;9(9):e103887. doi:10.1371/journal.pone.0103887
211. Luo F, Lu FT, Cao JX, Ma WJ, Xia ZF, Zhan JH, et al. HIF 1α inhibition promotes the efficacy of immune checkpoint blockade in the treatment of non small cell lung cancer. Cancer Lett. 2022;531:39 56. doi:10.1016/j.canlet.2022.01.027.
212. Wang M, Yan J, Cao X, Hua P, Li Z. Hydrogen sulfide modulates epithelial mesenchymal transition and angiogenesis in non small cell lung cancer via HIF 1α activation. Biochem Pharmacol. 2020;172:113775. doi:10.1016/j.bcp.2019.113775.
213. Luo Y, Lan L, Jiang YG, Zhao JH, Li MC, Wei NB, et al. Epithelial mesenchymal transition and migration of prostate cancer stem cells is driven by cancer associated fibroblasts in an HIF 1α/β catenin dependent pathway. Mol Cells. 2013;36(2):138 144. doi:10.1007/s10059-013-0096-8
214. Zhang J, Zhu L, Fang J, Ge Z, Li X. LRG1 modulates epithelial mesenchymal transition and angiogenesis in colorectal cancer via HIF 1α activation. J Exp Clin Cancer Res. 2016;35:29. doi:10.1186/s13046-016-0306-2
215. Zhang L, Huang G, Li X, Zhang Y, Jiang Y, Shen J, Liu J, Wang Q, Zhu J, Feng X, Dong J, Qian C. Hypoxia induces epithelial mesenchymal transition via activation of SNAI1 by hypoxia inducible factor 1α in hepatocellular carcinoma. BMC Cancer. 2013;13:108. doi:10.1186/1471-2407-13-108
216. Wang M, Zhao X, Zhu D, Liu T, Liang X, Liu F, et al. HIF 1α promoted vasculogenic mimicry formation in hepatocellular carcinoma through LOXL2 up regulation in hypoxic tumor microenvironment. J Exp Clin Cancer Res. 2017;36(1):60. doi:10.1186/s13046-017-0533-1
217. Yoo YG, Christensen J, Gu J, Huang LE. HIF 1α mediates tumor hypoxia to confer a perpetual mesenchymal phenotype for malignant progression. Sci Signal. 2011 Jun 21;4(178):pt4. doi:10.1126/scisignal.2002072
218. Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF 1α mediated epithelial to mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res. 2018;37(1):70. doi:10.1186/s13046-018-0730-6
219. Bocci F, Tripathi SC, Vilchez Mercedes SA, George JT, Casabar JP, Wong PK, et al. NRF2 activates a partial epithelial mesenchymal transition and is maximally present in a hybrid epithelial/mesenchymal phenotype. Integr Biol (Camb). 2019;11(6):251 263. doi:10.1093/intbio/zyz021
220. Feng R, Morine Y, Ikemoto T, Imura S, Iwahashi S, Saito Y, et al. Nrf2 activation drives macrophage polarization and cancer cell epithelial mesenchymal transition during interaction. Cell Commun Signal. 2018;16(1):54. doi:10.1186/s12964-018-0262-x
221. Yazaki K, Matsuno Y, Yoshida K, Sherpa M, Nakajima M, Matsuyama M, et al. ROS Nrf2 pathway mediates the development of TGF β1 induced epithelial mesenchymal transition through the activation of Notch signaling. Eur J Cell Biol. 2021;100(7 8):151181. doi:10.1016/j.ejcb.2021.151181.
222. Dong P, Xiong Y, Watari H, Hanley SJB, Konno Y, Ihira K, et al. MiR 137 and miR 34a directly target Snail and inhibit EMT, invasion and sphere forming ability of ovarian cancer cells. J Exp Clin Cancer Res. 2016;35(1):132. doi:10.1186/s13046-016-0415-y
223. You J, Li Y, Fang N, Liu B, Zu L, Chang R, et al. MiR 132 suppresses the migration and invasion of lung cancer cells via targeting the EMT regulator ZEB2. PLoS One. 2014;9(3):e91827. doi:10.1371/journal.pone.0091827
224. Sun L, Yao Y, Liu B, Lin Z, Lin L, Yang M, et al. MiR 200b and miR 15b regulate chemotherapy induced epithelial mesenchymal transition in human tongue cancer cells by targeting BMI1. Oncogene. 2012;31(4):432 445. doi:10.1038/onc.2011.263
225. Harazono Y, Muramatsu T, Endo H, Uzawa N, Kawano T, Harada K, et al. miR 655 is an EMT suppressive microRNA targeting ZEB1 and TGFBR2. PLoS One. 2013;8(5):e62757. doi:10.1371/journal.pone.0062757
226. Liu YN, Yin JJ, Abou Kheir W, Hynes PG, Casey OM, Fang L, et al. MiR 1 and miR 200 inhibit EMT via Slug dependent and tumorigenesis via Slug independent mechanisms. Oncogene. 2013 Jan 17;32(3):296 306. doi:10.1038/onc.2012.58
227. Arora H, Qureshi R, Park WY. miR 506 regulates epithelial mesenchymal transition in breast cancer cell lines. PLoS One. 2013;8(5):e64273. doi:10.1371/journal.pone.0064273
228. Zhu Y, Huang C, Zhang C, Zhou Y, Zhao E, Zhang Y, et al. LncRNA MIR200CHG inhibits EMT in gastric cancer by stabilizing miR 200c from target directed miRNA degradation. Nat Commun. 2023;14(1):8141. doi:10.1038/s41467-023-43974-w
229. Zhou W, Ye XL, Xu J, Cao MG, Fang ZY, Li LY, Guan GH, Liu Q, Qian YH, Xie D. The lncRNA H19 mediates breast cancer cell plasticity during EMT and MET plasticity by differentially sponging miR 200b/c and let 7b. Sci Signal. 2017;10(483):eaak9557. doi:10.1126/scisignal.aak9557
230. Xu L, Liu W, Li T, Hu Y, Wang Y, Huang L, et al. Long non coding RNA SMASR inhibits the EMT by negatively regulating TGF β/Smad signaling pathway in lung cancer. Oncogene. 2021;40(20):3578 3592. doi:10.1038/s41388-021-01760-2
231. Meng X, Xiao W, Sun J, Li W, Yuan H, Yu T, et al. CircPTK2/PABPC1/SETDB1 axis promotes EMT mediated tumor metastasis and gemcitabine resistance in bladder cancer. Cancer Lett. 2023;554:216023. doi:10.1016/j.canlet.2022.216023.
232. Yu Z, Zhu X, Li Y, Liang M, Liu M, Liu Z, et al. Circ HMGA2 (hsa_circ_0027446) promotes the metastasis and epithelial mesenchymal transition of lung adenocarcinoma cells through the miR 1236 3p/ZEB1 axis. Cell Death Dis. 2021;12(4):313. doi:10.1038/s41419-021-03601-2
233. Imodoye SO, Adedokun KA. EMT induced immune evasion: connecting the dots from mechanisms to therapy. Clin Exp Med. 2023;23(8):4265 4287. doi:10.1007/s10238-023-01229-4
234. Hu B, Tian X, Li Y, Liu Y, Yang T, Han Z, et al. Epithelial mesenchymal transition may be involved in the immune evasion of circulating gastric tumor cells via downregulation of ULBP1. Cancer Med. 2020;9(8):2686 2697. doi:10.1002/cam4.2871.
235. Kolijn K, Verhoef EI, Smid M, Böttcher R, Jenster GW, Debets R, et al. Epithelial mesenchymal transition in human prostate cancer demonstrates enhanced immune evasion marked by IDO1 expression. Cancer Res. 2018;78(16):4671 4679. doi:10.1158/0008-5472.can-17-3752
236. Liang Z, Lu L, Mao J, Li X, Qian H, Xu W. Curcumin reversed chronic tobacco smoke exposure induced urocystic EMT and acquisition of cancer stem cell properties via Wnt/β catenin. Cell Death Dis. 2017;8(10):e3066. doi:10.1038/cddis.2017.452
237. Lin CH, Shen YA, Hung PH, Yu YB, Chen YJ. Epigallocathechin gallate, polyphenol present in green tea, inhibits stem like characteristics and epithelial mesenchymal transition in nasopharyngeal cancer cell lines. BMC Complement Altern Med. 2012;12:201. doi:10.1186/1472-6882-12-201
238. Wei R, Cortez Penso NE, Hackman RM, Wang Y, Mackenzie GG. Epigallocatechin 3 Gallate (EGCG) suppresses pancreatic cancer cell growth, invasion, and migration partly through the inhibition of Akt pathway and epithelial mesenchymal transition: enhanced efficacy when combined with gemcitabine. Nutrients. 2019;11(8):1856. doi:10.3390/nu11081856
239. Tang SN, Singh C, Nall D, Meeker D, Shankar S, Srivastava RK. The dietary bioflavonoid quercetin synergizes with epigallocathechin gallate (EGCG) to inhibit prostate cancer stem cell characteristics, invasion, migration and epithelial mesenchymal transition. J Mol Signal. 2010;5:14. doi:10.1186/1750-2187-5-14
240. Chen PN, Chu SC, Kuo WH, Chou MY, Lin JK, Hsieh YS. Epigallocatechin 3 gallate inhibits invasion, epithelial mesenchymal transition, and tumor growth in oral cancer cells. J Agric Food Chem. 2011;59(8):3836 3844. doi:10.1021/jf1049408
241. Lee GA, Choi KC, Hwang KA. Kaempferol, a phytoestrogen, suppressed triclosan induced epithelial mesenchymal transition and metastatic related behaviors of MCF 7 breast cancer cells. Environ Toxicol Pharmacol. 2017;49:48 57. doi:10.1016/j.etap.2016.11.016
242. Jo E, Park SJ, Choi YS, Jeon WK, Kim BC. Kaempferol suppresses transforming growth factor β1 induced epithelial to mesenchymal transition and migration of A549 lung cancer cells by inhibiting Akt1 mediated phosphorylation of Smad3 at threonine 179. Neoplasia. 2015;17(7):525 537. doi:10.1016/j.neo.2015.06.004
243. Chang JH, Lai SL, Chen WS, Hung WY, Chow JM, Hsiao M, et al. Quercetin suppresses the metastatic ability of lung cancer through inhibiting Snail dependent Akt activation and Snail independent ADAM9 expression pathways. Biochim Biophys Acta Mol Cell Res. 2017;1864(10):1746 1758. doi:10.1016/j.bbamcr.2017.06.017
244. Feng J, Song D, Jiang S, Yang X, Ding T, Zhang H, et al. Quercetin restrains TGF β1 induced epithelial mesenchymal transition by inhibiting Twist1 and regulating E cadherin expression. Biochem Biophys Res Commun. 2018;498(1):132 138. doi:10.1016/j.bbrc.2018.02.044
245. Lu X, Chen D, Yang F, Xing N. Quercetin inhibits epithelial to mesenchymal transition (EMT) process and promotes apoptosis in prostate cancer via downregulating lncRNA MALAT1. Cancer Manag Res. 2020;12:1741 1750. doi:10.2147/CMAR.S241093
246. Baribeau S, Chaudhry P, Parent S, Asselin É. Resveratrol inhibits cisplatin induced epithelial to mesenchymal transition in ovarian cancer cell lines. PLoS One. 2014;9(1):e86987. doi:10.1371/journal.pone.0086987
247. Vergara D, Valente CM, Tinelli A, Siciliano C, Lorusso V, Acierno R, et al. Resveratrol inhibits the epidermal growth factor induced epithelial mesenchymal transition in MCF 7 cells. Cancer Lett. 2011;310(1):1 8. doi:10.1016/j.canlet.2011.04.009.
248. Dian L, Xu Z, Sun Y, Li J, Lu H, Zheng M, et al. Berberine alkaloids inhibit the proliferation and metastasis of breast carcinoma cells involving Wnt/β catenin signaling and EMT. Phytochemistry. 2022;200:113217. doi:10.1016/j.phytochem.2022.113217
249. Dai W, Wang F, He L, Lin C, Wu S, Chen P, et al. Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial mesenchymal transition: partial mediation by the transcription factor NFAT1. Mol Carcinog. 2015;54(4):301 311. doi:10.1002/mc.22100
250. Kim YS, Choi KC, Hwang KA. Genistein suppressed epithelial mesenchymal transition and migration efficacies of BG 1 ovarian cancer cells activated by estrogenic chemicals via estrogen receptor pathway and downregulation of TGF β signaling pathway. Phytomedicine. 2015;22(11):993 999. doi:10.1016/j.phymed.2015.08.003
251. Li YW, Xu J, Zhu GY, Huang ZJ, Lu Y, Li XQ, Wang N, Zhang FX. Apigenin suppresses the stem cell like properties of triple negative breast cancer cells by inhibiting YAP/TAZ activity. Cell Death Discov. 2018;4:105. doi:10.1038/s41420-018-0124-8
252. Chien MH, Lin YW, Wen YC, Yang YC, Hsiao M, Chang JL, et al. Targeting the SPOCK1 snail/slug axis mediated epithelial to mesenchymal transition by apigenin contributes to repression of prostate cancer metastasis. J Exp Clin Cancer Res. 2019;38(1):246. doi:10.1186/s13046-019-1247-3
253. Wang DX, Zou YJ, Zhuang XB, Chen SX, Lin Y, Li WL, et al. Sulforaphane suppresses EMT and metastasis in human lung cancer through miR 616 5p mediated GSK3β/β catenin signaling pathways. Acta Pharmacol Sin. 2017;38(2):241 251. doi:10.1038/aps.2016.122
254. Zou T, Lan M, Liu F, Li L, Cai T, Tian H, Cai Y. Emodin loaded polymer lipid hybrid nanoparticles enhance the sensitivity of breast cancer to doxorubicin by inhibiting epithelial–mesenchymal transition. Cancer Nanotechnol. 2021;12:22. doi:10.1186/s12645-021-00093-9
255. Shahin SA, Wang R, Simargi SI, Contreras A, Parra Echavarria L, Qu L, et al. Hyaluronic acid conjugated nanoparticle delivery of siRNA against TWIST reduces tumor burden and enhances sensitivity to cisplatin in ovarian cancer. Nanomedicine. 2018;14(4):1381 1394. doi:10.1016/j.nano.2018.04.008
256. Gao Y, Zhu J, Zheng X, Lin G, Miao P. Luteolin functionalized zinc oxide nanoparticles for cancer therapy based on autophagy activation and EMT inhibition. Langmuir. 2024;40(49):26363 26369. doi:10.1021/acs.langmuir.4c04194
257. Sureban SM, May R, Mondalek FG, Qu D, Ponnurangam S, Pantazis P, et al. Nanoparticle based delivery of siDCAMKL 1 increases microRNA 144 and inhibits colorectal cancer tumor growth via a Notch 1 dependent mechanism. J Nanobiotechnology. 2011;9:40. doi:10.1186/1477-3155-9-40
258. Watson KD, Lai CY, Qin S, Kruse DE, Lin YC, Seo JW, et al. Ultrasound increases nanoparticle delivery by reducing intratumoral pressure and increasing transport in epithelial and epithelial mesenchymal transition tumors. Cancer Res. 2012;72(6):1485 1493. doi:10.1158/0008-5472.can-11-3232
259. Parvani JG, Gujrati MD, Mack MA, Schiemann WP, Lu ZR. Silencing β3 integrin by targeted ECO/siRNA nanoparticles inhibits EMT and metastasis of triple negative breast cancer. Cancer Res. 2015;75(11):2316 2325. doi:10.1158/0008-5472.can-14-3485
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Tian Yu, Noushin Nabavi, Milad Ashrafizadeh

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors publishing in Cancer Biome and Targeted Therapy retain full copyright of their work. By submitting a manuscript, authors grant the publisher (GCINC Press) a non-exclusive license to publish, distribute, and archive the article, and to identify itself as the original publisher.
License
All articles are published open access under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/. This license permits unrestricted use, distribution, reproduction, and adaptation in any medium, including for commercial purposes, provided that:
- Proper attribution is given to the original author(s) and source,
- A link to the license is provided, and
- Any changes made are clearly indicated.
Author Rights
Authors retain the right to:
- Use their article in future works (e.g., books, theses, lectures)
- Share and archive the final published version on institutional repositories or personal websites
- Adapt or translate their work, or authorize others to do so, with proper citation
Reuse by Third Parties
Content is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). Third parties may copy, redistribute, remix, transform, and build upon the material for any purpose, including commercial use, provided that appropriate credit is given to the original author(s).
Archiving and Preservation
All articles are made freely available immediately upon publication, without embargo. Cancer Biome and Targeted Therapy is hosted on the Open Journal Systems (OJS) platform, developed by the Public Knowledge Project (PKP). The journal participates in long-term digital preservation through the PKP Preservation Network (PKP PN) using the LOCKSS system. Authors are encouraged to self-archive in institutional repositories, disciplinary archives, and preprint servers in accordance with the license terms.