Tumor Microenvironment in Triple-Negative Breast Cancer and Targeting Approaches

Authors

  • Youli Li Department of Medical Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China https://orcid.org/0000-0003-3644-3930
  • Yang Chen Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. https://orcid.org/0000-0003-2162-3648
  • Yuxin Mu Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China. Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China https://orcid.org/0000-0002-8465-6933
  • Xuemei Xiu Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, The Second People's Hospital of Kashi, Kashi, Xinjiang, China. https://orcid.org/0009-0007-1031-0503
  • Wenxing Qin Department of Medical Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China; Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China. https://orcid.org/0009-0002-7274-4917

Keywords:

Tumor microenvironment, triple-negative breast cancer, targeted therapy , immune checkpoint inhibitors, Drug resistance, Biomarkers

Abstract

Triple-negative breast cancer (TNBC) is an aggressive and heterogeneous subtype of breast cancer with high recurrence and early metastasis. Unlike hormone receptor-positive or HER2-positive cancers, TNBC lacks targeted therapies, and standard chemotherapy often yields limited and transient responses, making treatment challenging. The tumor microenvironment (TME) plays a central role in TNBC progression, immune evasion, and therapy resistance. It comprises multiple cellular components, tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), tumor-infiltrating lymphocytes (TILs), and myeloid-derived suppressor cells (MDSCs), as well as structural and signaling elements such as the extracellular matrix (ECM), growth factors, and cytokines. Interactions among these components create an immunosuppressive, pro-tumorigenic milieu that supports cancer cell survival, invasion, and metastasis. Targeting the TME has emerged as a promising therapeutic strategy. Immunotherapies, particularly immune checkpoint inhibitors (ICIs), can restore antitumor immunity by reversing T cell exhaustion and mitigating immune suppression. Response rates remain variable, leading to the exploration of combination approaches that pair ICIs with chemotherapy, radiotherapy, or TME-modulating agents to enhance efficacy. Direct targeting of TME components, including CAFs, TAMs, MDSCs, and ECM remodeling enzymes, is also being developed to disrupt the supportive tumor niche and enhance drug delivery. This review provides a comprehensive overview of the TNBC TME, emphasizing its role in tumor progression and therapy resistance, and summarizes current and emerging strategies to target the TME. By clarifying complex cellular and molecular interactions, these approaches aim to sensitize tumors to therapy, prevent metastasis, and support the development of more effective, personalized treatments for TNBC.

Author Biographies

Youli Li, Department of Medical Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China

Department of Medical Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China

Yang Chen, Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Xuemei Xiu, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, The Second People's Hospital of Kashi, Kashi, Xinjiang, China.

Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China; Department of Oncology, The Second People's Hospital of Kashi, Kashi, Xinjiang, China.

Wenxing Qin, Department of Medical Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China; Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

Department of Medical Oncology, Fudan University Shanghai Cancer Center Xiamen Hospital, Xiamen, China; Phase I Unit, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

References

1. Siegel RL, Miller KD, Wagle NS, Jemal A. Cancer statistics, 2023. CA Cancer J Clin. 2023;73(1):17-48. doi:10.3322/caac.21763

2. Arnold M, Morgan E, Rumgay H, Mafra A, Singh D, Laversanne M, et al. Current and future burden of breast cancer: global statistics for 2020 and 2040. Breast. 2022;66:15-23. doi:10.1016/j.breast.2022.08.010

3. Wu TN, Chen HM, Shyur LF. Current advancements of plant-derived agents for triple-negative breast cancer therapy through deregulating cancer cell functions and reprogramming tumor microenvironment. Int J Mol Sci. 2021;22(24):13571. doi:10.3390/ijms222413571

4. Pareja F, Reis-Filho JS. Triple-negative breast cancers - a panoply of cancer types. Nat Rev Clin Oncol. 2018;15(6):347-348. doi:10.1038/s41571-018-0001-7

5. Kwong A, Mang OWK, Wong CHN, Chau WW, Law SCK; Hong Kong Breast Cancer Research Group. Breast cancer in Hong Kong, Southern China: the first population-based analysis of epidemiological characteristics, stage-specific, cancer-specific, and disease-free survival in breast cancer patients: 1997-2001. Ann Surg Oncol. 2011;18(11):3072-3078. doi:10.1245/s10434-011-1960-4

6. Waks AG, Winer EP. Breast cancer treatment. JAMA. 2019;321(3):288-300. doi:10.1001/jama.2018.19323

7. Capuozzo M, Celotto V, Santorsola M, Fabozzi A, Landi L, Ferrara F, et al. Emerging treatment approaches for triple-negative breast cancer. Med Oncol. 2023;41(1):5. doi:10.1007/s12032-023-02257-6

8. Hwang KT, Kim J, Jung J, Chang JH, Chai YJ, Oh SW, et al. Impact of breast cancer subtypes on prognosis of women with operable invasive breast cancer: a population-based study using SEER database. Clin Cancer Res. 2019;25(6):1970-1979. doi:10.1158/1078-0432.Ccr-18-2782

9. Lehmann BD, Jovanović B, Chen X, Estrada MV, Johnson KN, Shyr Y, et al. Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PLoS One. 2016;11(6):e0157368. doi:10.1371/journal.pone.0157368

10. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, et al. Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest. 2011;121(7):2750-2767. doi:10.1172/jci45014

11. Yin L, Duan JJ, Bian XW, Yu SC. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020;22(1):61. doi:10.1186/s13058-020-01296-5

12. Lips EH, Mulder L, Oonk A, Van der Kolk LE, Hogervorst FBL, Imholz ALT, et al. Triple-negative breast cancer: BRCAness and concordance of clinical features with BRCA1-mutation carriers. Br J Cancer. 2013;108(10):2172-2177. doi:10.1038/bjc.2013.144

13. Kudelova E, Smolar M, Holubekova V, Hornakova A, Dvorska D, Lucansky V, et al. Genetic heterogeneity, tumor microenvironment and immunotherapy in triple-negative breast cancer. Int J Mol Sci. 2022;23(23):14937. doi:10.3390/ijms232314937

14. Niture S, Ghosh S, Jaboin J, Seneviratne D. Tumor microenvironment dynamics of triple-negative breast cancer under radiation therapy. Int J Mol Sci. 2025;26(6):2795. doi:10.3390/ijms26062795

15. Guo Z, Zhu Z, Lin X, Wang S, Wen Y, Wang L, et al. Tumor microenvironment and immunotherapy for triple-negative breast cancer. Biomark Res. 2024;12(1):166. doi:10.1186/s40364-024-00714-6

16. Wang X, Song Y, Yu L, Xue X, Pang M, Li Y, et al. Co-delivery of hesperetin and cisplatin via hyaluronic acid-modified liposome for targeted inhibition of aggression and metastasis of triple-negative breast cancer. ACS Appl Mater Interfaces. 2023;15(29):34360-34377. doi:10.1021/acsami.3c03233

17. Wang L, Zhang L, Zhao L, Shao S, Ning Q, Jing X, et al. VEGFA/NRP-1/GAPVD1 axis promotes progression and cancer stemness of triple-negative breast cancer by enhancing tumor cell-macrophage crosstalk. Int J Biol Sci. 2024;20(2):446-463. doi:10.7150/ijbs.86085

18. Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: improving patient selection for treatment. Cancer Discov. 2019;9(2):176-198. doi:10.1158/2159-8290.Cd-18-1177

19. Cortes J, Rugo HS, Cescon DW, Im SA, Yusof MM, Gallardo C, et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N Engl J Med. 2022;387(3):217-226. doi:10.1056/NEJMoa2202809

20. André F, Zielinski CC. Optimal strategies for the treatment of metastatic triple-negative breast cancer with currently approved agents. Ann Oncol. 2012;23(Suppl 6):vi46–51. doi:10.1093/annonc/mds195

21. Lehmann BD, Abramson VG, Dees EC, Shah PD, Ballinger TJ, Isaacs C, et al. Atezolizumab in combination with carboplatin and survival outcomes in patients with metastatic triple-negative breast cancer: the TBCRC 043 phase 2 randomized clinical trial. JAMA Oncol. 2024;10(2):193-201. doi:10.1001/jamaoncol.2023.5424

22. Tarantino P, Corti C, Schmid P, Cortes J, Mittendorf EA, Rugo H, et al. Immunotherapy for early triple negative breast cancer: research agenda for the next decade. NPJ Breast Cancer. 2022;8(1):23. doi:10.1038/s41523-022-00386-1

23. Safonov A, Jiang T, Bianchini G, Gyorffy B, Karn T, Hatzis C, et al. Immune gene expression is associated with genomic aberrations in breast cancer. Cancer Res. 2017;77(12):3317-3324. doi:10.1158/0008-5472.Can-16-3478

24. Jain A, Barge A, Parris CN. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: overcoming resistance mechanisms. Oncogene. 2025;44(4):193-207. doi:10.1038/s41388-024-03227-6

25. Derakhshan F, Reis-Filho JS. Pathogenesis of triple-negative breast cancer. Annu Rev Pathol. 2022;17:181-204. doi:10.1146/annurev-pathol-042420-093238

26. Liu Y, Hu Y, Xue J, Li J, Yi J, Bu J, et al. Advances in immunotherapy for triple-negative breast cancer. Mol Cancer. 2023;22(1):145. doi:10.1186/s12943-023-01850-7

27. Michaels E, Chen N, Nanda R. The role of immunotherapy in triple-negative breast cancer (TNBC). Clin Breast Cancer. 2024;24(4):263-270. doi:10.1016/j.clbc.2024.03.001

28. Loizides S, Constantinidou A. Triple negative breast cancer: immunogenicity, tumor microenvironment, and immunotherapy. Front Genet. 2023;13:1095839. doi:10.3389/fgene.2022.1095839

29. Huo W, Yang X, Wang B, Cao L, Fang Z, Li Z, et al. Biomineralized hydrogel DC vaccine for cancer immunotherapy: a boosting strategy via improving immunogenicity and reversing immune-inhibitory microenvironment. Biomaterials. 2022;288:121722. doi:10.1016/j.biomaterials.2022.121722

30. Tan Z, Kan C, Sun M, Yang F, Wong M, Wang S, et al. Mapping breast cancer microenvironment through single-cell omics. Front Immunol. 2022;13:868813. doi:10.3389/fimmu.2022.868813

31. Harris MA, Savas P, Virassamy B, O'Malley MMR, Kay J, Mueller SN, et al. Towards targeting the breast cancer immune microenvironment. Nat Rev Cancer. 2024;24(8):554-577. doi:10.1038/s41568-024-00714-6

32. Félix-Pina P, Franco Molina MA, García Coronado PL, Prado-Garcia H, Zarate-Trivino DG, Castro-Valenzuela BE, et al. β-D-glucose-reduced silver nanoparticles remodel the tumor microenvironment in a murine model of triple-negative breast cancer. Int J Mol Sci. 2024;25(15):8432. doi:10.3390/ijms25158432

33. Neophytou CM, Panagi M, Stylianopoulos T, Papageorgis P. The role of tumor microenvironment in cancer metastasis: molecular mechanisms and therapeutic opportunities. Cancers (Basel). 2021;13(9):2053. doi:10.3390/cancers13092053

34. Mai Z, Fu L, Su J, To KKW, Yang C, Xia C. Intra-tumoral sphingobacterium multivorum promotes triple-negative breast cancer progression by suppressing tumor immunosurveillance. Mol Cancer. 2025;24(1):6. doi:10.1186/s12943-024-02202-9

35. Pellegrino B, David K, Rabani S, Lampert B, Tran T, Doherty E, et al. CD74 promotes the formation of an immunosuppressive tumor microenvironment in triple-negative breast cancer in mice by inducing the expansion of tolerogenic dendritic cells and regulatory B cells. PLOS Biol. 2024;22(11):e3002905. doi:10.1371/journal.pbio.3002905

36. Palakurthi B, Fross SR, Guldner IH, Aleksandrovic E, Liu X, Martino AK, et al. Targeting CXCL16 and STAT1 augments immune checkpoint blockade therapy in triple-negative breast cancer. Nat Commun. 2023;14(1):2109. doi:10.1038/s41467-023-37727-y

37. Weng YS, Tseng HY, Chen YA, Shen PC, Al Haq AT, Chen LM, et al. MCT-1/mir-34a/il-6/IL-6R signaling axis promotes EMT progression, cancer stemness and M2 macrophage polarization in triple-negative breast cancer. Mol Cancer. 2019;18(1):42. doi:10.1186/s12943-019-0988-0

38. O’Connell BC, Hubbard C, Zizlsperger N, Fitzgerald D, Kutok JL, Varner J, et al. Eganelisib combined with immune checkpoint inhibitor therapy and chemotherapy in frontline metastatic triple-negative breast cancer triggers macrophage reprogramming, immune activation and extracellular matrix reorganization in the tumor microenvironment. J Immunother Cancer. 2024;12(8):e009160. doi:10.1136/jitc-2024-009160

39. Mayer S, Milo T, Isaacson A, Halperin C, Miyara S, Stein Y, et al. The tumor microenvironment shows a hierarchy of cell-cell interactions dominated by fibroblasts. Nat Commun. 2023;14(1):5810. doi:10.1038/s41467-023-41518-w

40. Wang Y, Gao D, Jin L, Ren X, Ouyang Y, Zhou Y, et al. NADPH selective depletion nanomedicine‐mediated radio‐immunometabolism regulation for strengthening anti-PDL1 therapy against TNBC. Adv Sci (Weinh). 2023;10(3):e2203788. doi:10.1002/advs.202203788

41. Dong X, Wang X, Zheng X, Jiang H, Liu L, Ma N, et al. Targeted nanoparticle delivery system for tumor-associated macrophage reprogramming to enhance TNBC therapy. Cell Biol Toxicol. 2025;41(1):58. doi:10.1007/s10565-025-10001-1

42. Yang Y, Li H, Yang W, Shi Y. Improving efficacy of TNBC immunotherapy: based on analysis and subtyping of immune microenvironment. Front Immunol. 2024;15:1441667. doi:10.3389/fimmu.2024.1441667

43. Bagchi S, Yuan R, Engleman EG. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu Rev Pathol. 2021;16(1):223-249. doi:10.1146/annurev-pathol-042020-042741

44. Nagasaki J, Ishino T, Togashi Y. Mechanisms of resistance to immune checkpoint inhibitors. Cancer Sci. 2022;113(10):3303-3312. doi:10.1111/cas.15497

45. Jenkins RW, Barbie DA, Flaherty KT. Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer. 2018;118(1):9-16. doi:10.1038/bjc.2017.434

46. Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw. 2020;18(4):479-489. doi:10.6004/jnccn.2020.7554

47. Mediratta K, El-Sahli S, D'Costa V, Wang L. Current progresses and challenges of immunotherapy in triple-negative breast cancer. Cancers (Basel). 2020;12(12):3529. doi:10.3390/cancers12123529

48. Shen G, Liu Z, Wang M, Zhao Y, Liu X, Hou Y, et al. Neoadjuvant apatinib addition to sintilimab and carboplatin-taxane based chemotherapy in patients with early triple-negative breast cancer: the phase 2 NeoSAC trial. Signal Transduct Target Ther. 2025;10(1):41. doi:10.1038/s41392-025-02137-7

49. Panagi M, Voutouri C, Mpekris F, Papageorgis P, Martin MR, Martin JD, et al. TGF-β inhibition combined with cytotoxic nanomedicine normalizes triple negative breast cancer microenvironment towards anti-tumor immunity. Theranostics. 2020;10(4):1910-1922. doi:10.7150/thno.36936

50. Yang M, Guo J, Li J, Wang S, Sun Y, Liu Y, et al. Platycodon grandiflorum-derived extracellular vesicles suppress triple-negative breast cancer growth by reversing the immunosuppressive tumor microenvironment and modulating the gut microbiota. J Nanobiotechnology. 2025;23(1):92. doi:10.1186/s12951-025-03139-x

51. Wang Q, Li D, Ma H, Li Z, Wu J, Qiao J, et al. Tumor cell-derived EMP1 is essential for cancer-associated fibroblast infiltration in tumor microenvironment of triple-negative breast cancer. Cell Death Dis. 2025;16(1):143. doi:10.1038/s41419-025-07464-9

52. Bareche Y, Buisseret L, Gruosso T, Girard E, Venet D, Dupont F, et al. Unraveling triple-negative breast cancer tumor microenvironment heterogeneity: towards an optimized treatment approach. J Natl Cancer Inst. 2020;112(7):708-719. doi:10.1093/jnci/djz208

53. Jiang K, Dong M, Li C, Sheng J. Unraveling heterogeneity of tumor cells and microenvironment and its clinical implications for triple negative breast cancer. Front Oncol. 2021;11:557477. doi:10.3389/fonc.2021.557477

54. Hu L, Hu J, Qin C, Liu S, Yu Y. Ferroptosis in TNBC: interplay with tumor-infiltrating immune cells and therapeutic implications. Mol Cell Biochem. 2025;480 (9):5029-5039. doi:10.1007/s11010-025-05305-z

55. Wu C, Dong S, Huang R, Chen X. Cancer-associated adipocytes and breast cancer: intertwining in the tumor microenvironment and challenges for cancer therapy. Cancers (Basel). 2023;15(3):726. doi:10.3390/cancers15030726

56. Mi H, Varadhan R, Cimino-Mathews AM, Emens LA, Santa-Maria CA, Popel AS. Spatial architecture of single-cell and vasculature in tumor microenvironment predicts clinical outcomes in triple-negative breast cancer. Mod Pathol. 2025;38(2):100652. doi:10.1016/j.modpat.2024.100652

57. Zhang L, Wang L, Xu Z, Zhang X, Guan S, Liu Z, et al. eNAMPT/Ac-STAT3/DIRAS2 axis promotes development and cancer stemness in triple-negative breast cancer by enhancing cytokine crosstalk between tumor-associated macrophages and cancer cells. Int J Biol Sci. 2025;21(5):2027-2047. doi:10.7150/ijbs.103723

58. Shu Y, Cheng P. Targeting tumor-associated macrophages for cancer immunotherapy. Biochim Biophys Acta Rev Cancer. 2020;1874(2):188434. doi:10.1016/j.bbcan.2020.188434

59. Strizova Z, Benesova I, Bartolini R, Novysedlak R, Cecrdlova E, Foley LK, et al. M1/M2 macrophages and their overlaps - myth or reality? Clinical science. 2023;137(15):1067-93. doi:10.1042/cs20220531

60. Chen Z, Wu J, Wang L, Zhao H, He J. Tumor-associated macrophages of the M1/M2 phenotype are involved in the regulation of malignant biological behavior of breast cancer cells through the EMT pathway. Med Oncol. 2022;39(5):83. doi:10.1007/s12032-022-01670-7

61. Mantovani A, Allavena P, Marchesi F, Garlanda C. Macrophages as tools and targets in cancer therapy. Nat Rev Drug Discov. 2022;21(11):799-820. doi:10.1038/s41573-022-00520-5

62. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787-795. doi:10.1172/jci59643

63. Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206-221. doi:10.1016/j.addr.2017.04.010

64. Hu Q, Bian Q, Rong D, Wang L, Song J, Huang HS, et al. JAK/STAT pathway: extracellular signals, diseases, immunity, and therapeutic regimens. Front Bioeng Biotechnol. 2023;11:1110765. doi:10.3389/fbioe.2023.1110765

65. Yuan Y, Wu D, Hou Y, Zhang Y, Tan C, Nie X, et al. Wnt signaling: modulating tumor-associated macrophages and related immunotherapeutic insights. Biochem Pharmacol. 2024;223:116154. doi:10.1016/j.bcp.2024.116154

66. Bai X, Guo YR, Zhao ZM, Li XY, Dai DQ, Zhang JK, et al. Macrophage polarization in cancer and beyond: from inflammatory signaling pathways to potential therapeutic strategies. Cancer Lett. 2025;625:217772. doi:10.1016/j.canlet.2025.217772

67. Zou S, Tong Q, Liu B, Huang W, Tian Y, Fu X. Targeting STAT3 in cancer immunotherapy. Mol Cancer. 2020;19(1):145. doi:10.1186/s12943-020-01258-7

68. Skytthe MK, Graversen JH, Moestrup SK. Targeting of CD163(+) macrophages in inflammatory and malignant diseases. Int J Mol Sci. 2020;21(15):5497. doi:10.3390/ijms21155497

69. Allison E, Edirimanne S, Matthews J, Fuller SJ. Breast cancer survival outcomes and tumor-associated macrophage markers: a systematic review and meta-analysis. Oncol Ther. 2023;11(1):27-48. doi:10.1007/s40487-022-00214-3

70. Jamiyan T, Kuroda H, Yamaguchi R, Abe A, Hayashi M. CD68- and CD163-positive tumor-associated macrophages in triple negative cancer of the breast. Virchows Arch. 2020;477(6):767-775. doi:10.1007/s00428-020-02855-z

71. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated macrophages as treatment targets in oncology. Nat Rev Clin Oncol. 2017;14(7):399-416. doi:10.1038/nrclinonc.2016.217

72. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252-264. doi:10.1038/nrc3239

73. Rodriguez PC, Ochoa AC, Al-Khami AA. Arginine metabolism in myeloid cells shapes innate and adaptive immunity. Front Immunol. 2017;8:93. doi:10.3389/fimmu.2017.00093

74. Mao X, Xu J, Wang W, Liang C, Hua J, Liu J, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: new findings and future perspectives. Mol Cancer. 2021;20(1):131. doi:10.1186/s12943-021-01428-1

75. Magesh P, Thankachan S, Venkatesh T, Suresh PS. Breast cancer fibroblasts and cross-talk. Clin Chim Acta. 2021;521:158-169. doi:10.1016/j.cca.2021.07.011

76. Zhao Y, Shen M, Wu L, Yang H, Yao Y, Yang Q, et al. Stromal cells in the tumor microenvironment: accomplices of tumor progression? Cell Death Dis. 2023;14(9):587. doi:10.1038/s41419-023-06110-6

77. Calon A, Lonardo E, Berenguer-Llergo A, Espinet E, Hernando-Momblona X, Iglesias M, et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet. 2015;47(4):320-329. doi:10.1038/ng.3225

78. Grout JA, Sirven P, Leader AM, Maskey S, Hector E, Puisieux I, et al. Spatial positioning and matrix programs of cancer-associated fibroblasts promote T-cell exclusion in human lung tumors. Cancer Discov. 2022;12(11):2606-2625. doi:10.1158/2159-8290.Cd-21-1714

79. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020;20(3):174-186. doi:10.1038/s41568-019-0238-1

80. Rice AJ, Cortes E, Lachowski D, Cheung BCH, Karim SA, Morton JP, et al. Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis. 2017;6(7):e352. doi:10.1038/oncsis.2017.54

81. Northcott JM, Dean IS, Mouw JK, Weaver VM. Feeling stress: the mechanics of cancer progression and aggression. Front Cell Dev Biol. 2018;6:17. doi:10.3389/fcell.2018.00017

82. Wu C, Sun X, Lu Y, Wang H, Yu Z, Wang Z, et al. Cancer-associated fibroblast promotes tamoxifen resistance in estrogen receptor positive breast cancer via exosomal LncRNA PRKCQ-AS1/miR-200a-3p/MKP1 axis-mediated apoptosis suppression. J Exp Clin Cancer Res. 2025;44(1):274. doi:10.1186/s13046-025-03529-x

83. Moroishi T, Hansen CG, Guan KL. The emerging roles of YAP and TAZ in cancer. Nat Rev Cancer. 2015;15(2):73-79. doi:10.1038/nrc3876

84. Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, et al. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013;110(50):20212-20217. doi:10.1073/pnas.1320318110

85. Liu M, Wang X, Wang L, Ma X, Gong Z, Zhang S, et al. Targeting the IDO1 pathway in cancer: from bench to bedside. J Hematol Oncol. 2018;11(1):100. doi:10.1186/s13045-018-0644-y

86. Prendergast GC, Smith C, Thomas S, Mandik-Nayak L, Laury-Kleintop L, Metz R, et al. Indoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancer. Cancer Immunol Immunother. 2014;63(7):721-735. doi:10.1007/s00262-014-1549-4

87. Loi S, Michiels S, Adams S, Loibl S, Budczies J, Denkert C, et al. The journey of tumor-infiltrating lymphocytes as a biomarker in breast cancer: clinical utility in an era of checkpoint inhibition. Ann Oncol. 2021;32(10):1236-1244. doi:10.1016/j.annonc.2021.07.007

88. Yamashita N, Long M, Fushimi A, Yamamoto M, Hata T, Hagiwara M, et al. MUC1-C integrates activation of the IFN-γ pathway with suppression of the tumor immune microenvironment in triple-negative breast cancer. J Immunother Cancer. 2021;9(1):e002115. doi:10.1136/jitc-2020-002115

89. Cao Y, Ge X, Zhu X, Han Y, Wang P, Akakuru OU, et al. Transformable neuropeptide prodrug with tumor microenvironment responsiveness for tumor growth and metastasis inhibition of triple‐negative breast cancer. Adv Sci (Weinh). 2023;10(21):2300545. doi:10.1002/advs.202300545

90. Wang S, Wang Z, Li Z, Xu J, Meng X, Zhao Z, et al. A catalytic immune activator based on magnetic nanoparticles to reprogram the immunoecology of breast cancer from "cold" to "hot" state. Adv Healthc Mater. 2022;11(21):e2201240. doi:10.1002/adhm.202201240

91. Zhu D, Lu Y, Yan Z, Deng Q, Hu B, Wang Y, et al. A β-carboline derivate PAD4 inhibitor reshapes neutrophil phenotype and improves the tumor immune microenvironment against triple-negative breast cancer. J Med Chem. 2024;67(10):7973-7994. doi:10.1021/acs.jmedchem.4c00030

92. Veglia F, Sanseviero E, Gabrilovich DI. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat Rev Immunol. 2021;21(8):485-498. doi:10.1038/s41577-020-00490-y

93. Huang P, Zhou X, Zheng M, Yu Y, Jin G, Zhang S. Regulatory T cells are associated with the tumor immune microenvironment and immunotherapy response in triple-negative breast cancer. Front Immunol. 2023;14:1263537. doi:10.3389/fimmu.2023.1263537

94. Kang JH, Zappasodi R. Modulating Treg stability to improve cancer immunotherapy. Trends Cancer. 2023;9(11):911-927. doi:10.1016/j.trecan.2023.07.015

95. Malla RR, Vasudevaraju P, Vempati RK, Rakshmitha M, Merchant N, Nagaraju GP. Regulatory T cells: their role in triple-negative breast cancer progression and metastasis. Cancer. 2022;128(6):1171-1183. doi:10.1002/cncr.34084

96. Zheng C, Xu X, Wu M, Xue L, Zhu J, Xia H, et al. Neutrophils in triple-negative breast cancer: an underestimated player with increasingly recognized importance. Breast Cancer Res. 2023;25(1):88. doi:10.1186/s13058-023-01676-7

97. SenGupta S, Hein LE, Xu Y, Zhang J, Konwerski JR, Li Y, et al. Triple-negative breast cancer cells recruit neutrophils by secreting TGF-β and CXCR2 ligands. Front Immunol. 2021;12:659996. doi:10.3389/fimmu.2021.659996

98. Munkácsy G, Santarpia L, Győrffy B. Therapeutic potential of tumor metabolic reprogramming in triple-negative breast cancer. Int J Mol Sci. 2023;24(8):6945. doi:10.3390/ijms24086945

99. Abdel-Latif M, Youness RA. Why natural killer cells in triple negative breast cancer? World J Clin Oncol. 2020;11(7):464-476. doi:10.5306/wjco.v11.i7.464

100. Zhang Y, Ji S, Miao G, Du S, Wang H, Yang X, et al. The current role of dendritic cells in the progression and treatment of colorectal cancer. Cancer Biol Med. 2024;21(9):769-783. doi:10.20892/j.issn.2095-3941.2024.0188

101. Hu X, Dou Q, Jiang P, Zhang M, Wang J. Targeting matrix metalloproteinases activating and indoleamine 2,3-dioxygenase suppression for triple-negative breast cancer multimodal therapy. Int J Biol Macromol. 2025;310(Part 3):143289. doi:10.1016/j.ijbiomac.2025.143289

102. Lu X, Gou Z, Chen H, Li L, Chen F, Bao C, et al. Extracellular matrix cancer-associated fibroblasts promote stromal fibrosis and immune exclusion in triple-negative breast cancer. J Pathol. 2025;265(3):385-399. doi:10.1002/path.6395

103. Zhang Y, Zhou J, Wang Y, Wu Y, Li Y, Wang B, et al. Stimuli-responsive polymer-dasatinib prodrug to reprogram cancer-associated fibroblasts for boosted immunotherapy. J Control Release. 2025;381:113606. doi:10.1016/j.jconrel.2025.113606

104. Vecchi L, Mota STS, Zóia MAP, Martins IC, Souza JB, Santos TG, et al. Interleukin-6 signaling in triple negative breast cancer cells elicits the annexin A1/formyl peptide receptor 1 axis and affects the tumor microenvironment. Cells. 2022;11(10):1705. doi:10.3390/cells11101705

105. Yang M, Qin C, Tao L, Cheng G, Li J, Lv F, et al. Synchronous targeted delivery of TGF-β siRNA to stromal and tumor cells elicits robust antitumor immunity against triple-negative breast cancer by comprehensively remodeling the tumor microenvironment. Biomaterials. 2023;301:122253. doi:10.1016/j.biomaterials.2023.122253

106. Tsai TH, Yang CC, Kou TC, Yang CE, Dai JZ, Chen CL, et al. Overexpression of GLUT3 promotes metastasis of triple‐negative breast cancer by modulating the inflammatory tumor microenvironment. J Cell Physiol. 2021;236(6):4669-4680. doi:10.1002/jcp.30189

107. Ren X, Cheng Z, He J, Yao X, Liu Y, Cai K, et al. Inhibition of glycolysis-driven immunosuppression with a nano-assembly enhances response to immune checkpoint blockade therapy in triple negative breast cancer. Nat Commun. 2023;14(1):7021. doi:10.1038/s41467-023-42883-2

108. Xie Y, Xie F, Zhou X, Zhang L, Yang B, Huang J, et al. Microbiota in tumors: from understanding to application. Adv Sci (Weinh). 2022;9(21):e2200470. doi:10.1002/advs.202200470

109. Fu A, Yao B, Dong T, Chen Y, Yao J, Liu Y, et al. Tumor-resident intracellular microbiota promotes metastatic colonization in breast cancer. Cell. 2022;185(8):1356-72.e26. doi:10.1016/j.cell.2022.02.027

110. Devoy C, Flores Bueso Y, Tangney M. Understanding and harnessing triple-negative breast cancer-related microbiota in oncology. Front Oncol. 2022;12:1020121. doi:10.3389/fonc.2022.1020121

111. Liao K, Wen J, Liu Z, Zhang B, Zhang X, Fu Y, et al. The role of intratumoral microbiome in the occurrence, proliferation, metastasis of colorectal cancer and its underlying therapeutic strategies. Ageing Res Rev. 2025;111:102820. doi:10.1016/j.arr.2025.102820

112. Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259. doi:10.1038/s41467-020-16967-2

113. Akbari E, Epstein JB, Samim F. Unveiling the hidden links: periodontal disease, fusobacterium nucleatum, and cancers. Curr Oncol Rep. 2024;26(11):1388-1397. doi:10.1007/s11912-024-01591-w

114. Parida S, Wu S, Siddharth S, Wang G, Muniraj N, Nagalingam A, et al. A procarcinogenic colon microbe promotes breast tumorigenesis and metastatic progression and concomitantly activates notch and β-catenin axes. Cancer Discov. 2021;11(5):1138-1157. doi:10.1158/2159-8290.Cd-20-0537

115. Chiba A, Bawaneh A, Velazquez C, Clear KYJ, Wilson AS, Howard-McNatt M, et al. Neoadjuvant chemotherapy shifts breast tumor microbiota populations to regulate drug responsiveness and the development of metastasis. Mol Cancer Res. 2020;18(1):130-139. doi:10.1158/1541-7786.Mcr-19-0451

116. Li T, Huang Y, Cui S, Hong Z, Zhang X, Li Z, et al. RNA methylation patterns of tumor microenvironment cells regulate prognosis and immunotherapeutic responsiveness in patients with triple-negative breast cancer. Sci Rep. 2024;14(1):26075. doi:10.1038/s41598-024-77941-2

117. Adewunmi O, Shen Y, Zhang XHF, Rosen JM. Targeted inhibition of lncRNA malat1 alters the tumor immune microenvironment in preclinical syngeneic mouse models of triple-negative breast cancer. Cancer Immunol Res. 2023;11(11):1462-1479. doi:10.1158/2326-6066.cir-23-0045

118. Sabit H, Adel A, Abdelfattah MM, Ramadan RM, Nazih M, Abdel-Ghany S, et al. The role of tumor microenvironment and immune cell crosstalk in triple-negative breast cancer (TNBC): emerging therapeutic opportunities. Cancer Lett. 2025;628:217865. doi:10.1016/j.canlet.2025.217865

119. Tahtaci G, Gunel N, Sadioglu A, Akyurek N, Boz O, Uner A. LAG-3 expression in tumor microenvironment of triple-negative breast cancer. Turk J Med Sci. 2023;53(1):142–148. doi:10.55730/1300-0144.5567

120. Xiong W, Cheng Z, Chen H, Liang H, Wang M, Chen Y, et al. Biomimetic tumor cell membrane‐encapsulated nanoparticles combine NIR‐II photothermal therapy and chemotherapy for enhanced immunotherapy in triple-negative breast cancer. Adv Funct Mater. 2024;34(52):2410841. doi:10.1002/adfm.202410841

121. Farshbafnadi M, Pastaki Khoshbin A, Rezaei N. Immune checkpoint inhibitors for triple-negative breast cancer: from immunological mechanisms to clinical evidence. Int Immunopharmacol. 2021;98:107876. doi:10.1016/j.intimp.2021.107876

122. Nguyen HM, Paulishak W, Oladejo M, Wood L. Dynamic tumor microenvironment, molecular heterogeneity, and distinct immunologic portrait of triple-negative breast cancer: an impact on classification and treatment approaches. Breast Cancer. 2023;30(2):167-186. doi:10.1007/s12282-022-01415-4

123. Debien V, De Caluwé A, Wang X, Piccart-Gebhart M, Tuohy VK, Romano E, et al. Immunotherapy in breast cancer: an overview of current strategies and perspectives. NPJ Breast Cancer. 2023;9(1):7. doi:10.1038/s41523-023-00508-3

124. Schmid P, Rugo HS, Adams S, Schneeweiss A, Barrios CH, Iwata H, et al. Atezolizumab plus nab-paclitaxel as first-line treatment for unresectable, locally advanced or metastatic triple-negative breast cancer (IMpassion130): updated efficacy results from a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2020;21(1):44-59. doi:10.1016/s1470-2045(19)30689-8

125. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex role of tumor-infiltrating macrophages. Nat Immunol. 2022;23(8):1148-1156. doi:10.1038/s41590-022-01267-2

126. Jiang R, Yang L, Liu X, Xu Y, Han L, Chen Y, et al. Genetically engineered macrophages reverse the immunosuppressive tumor microenvironment and improve immunotherapeutic efficacy in TNBC. Mol Ther. 2025;33(7):3339-3359. doi:10.1016/j.ymthe.2025.03.024

127. Kalinski P, Kokolus KM, Gandhi S. Paclitaxel, interferons and functional reprogramming of tumor-associated macrophages in optimized chemo-immunotherapy. J Immunother Cancer. 2025;13(5):e010960. doi:10.1136/jitc-2024-010960

128. He L, Jhong JH, Chen Q, Huang KY, Strittmatter K, Kreuzer J, et al. Global characterization of macrophage polarization mechanisms and identification of M2-type polarization inhibitors. Cell Rep. 2021;37(5):109955. doi:10.1016/j.celrep.2021.109955

129. Fan J, Qin Y, Qiu W, Liang J, Xiao C, Xie Q, et al. Gamabufotalin loaded micro-nanocomposites for multimodal therapy of metastatic TNBC by efficiently inducing ICD. Biomaterials. 2025;314:122851. doi:10.1016/j.biomaterials.2024.122851

130. Chen M, Song L, Zhou Y, Xu T, Sun T, Liu Z, et al. Promotion of triple negative breast cancer immunotherapy by combining bioactive radicals with immune checkpoint blockade. Acta Biomater. 2025;194:305-322. doi:10.1016/j.actbio.2025.01.015

131. Chen X, Yang M, Yin J, Li P, Zeng S, Zheng G, et al. Tumor-associated macrophages promote epithelial-mesenchymal transition and the cancer stem cell properties in triple-negative breast cancer through CCL2/AKT/β-catenin signaling. Cell Commun Signal. 2022;20(1):92. doi:10.1186/s12964-022-00888-2

132. Colligan SH, Amitrano AM, Zollo RA, Peresie J, Kramer ED, Morreale B, et al. Inhibiting the biogenesis of myeloid-derived suppressor cells enhances immunotherapy efficacy against mammary tumor progression. J Clin Invest. 2022;132(23):e158661. doi:10.1172/jci158661

133. Xiao Y, Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol Ther. 2021;221:107753. doi:10.1016/j.pharmthera.2020.107753

134. Cazet AS, Hui MN, Elsworth BL, Wu SZ, Roden D, Chan C-L, et al. Targeting stromal remodeling and cancer stem cell plasticity overcomes chemoresistance in triple negative breast cancer. Nat Commun. 2018;9(1):2897. doi:10.1038/s41467-018-05220-6

135. Lim SA. Metabolic reprogramming of the tumor microenvironment to enhance immunotherapy. BMB Rep. 2024;57(9):388-399. doi:10.5483/BMBRep.2024-0031

136. Yang X, Cui X, Wang G, Zhou M, Wu Y, Du Y, et al. HDAC inhibitor regulates the tumor immune microenvironment via pyroptosis in triple negative breast cancer. Mol Carcinog. 2024;63(9):1800-1813. doi:10.1002/mc.23773

137. Liu X, Sun M, Pu F, Ren J, Qu X. Transforming intratumor bacteria into immunopotentiators to reverse cold tumors for enhanced immuno-chemodynamic therapy of triple-negative breast cancer. J Am Chem Soc. 2023;145(48):26296-26307. doi:10.1021/jacs.3c09472

138. Kim S, Han I-H, Lee S, Park D, Lee H, Kim J, et al. The combination of CD300c antibody with PD-1 blockade suppresses tumor growth and metastasis by remodeling the tumor microenvironment in triple-negative breast cancer. Int J Mol. Sci. 2025;26(11):5045. doi:10.3390/ijms26115045

139. Liu L, He H, Luo Z, Zhou H, Liang R, Pan H, et al. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple‐negative breast cancer. Adv Funct Mater. 2020;30(10):1910176. doi:10.1002/adfm.201910176

140. Fang K, Yuan S, Zhang X, Zhang J, Sun SL, Li X. Regulation of immunogenic cell death and potential applications in cancer therapy. Front Immunol. 2025;16:1571212. doi:10.3389/fimmu.2025.1571212

141. Loibl S, Schneeweiss A, Huober J, Braun M, Rey J, Blohmer JU, et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann Oncol. 2022;33(11):1149-1158. doi:10.1016/j.annonc.2022.07.1940

142. Cortes J, Cescon DW, Rugo HS, Nowecki Z, Im SA, Yusof MM, et al. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet. 2020;396(10265):1817-1828. doi:10.1016/s0140-6736(20)32531-9

143. Tezcan O, Elshafei AS, Benderski K, Rama E, Wagner M, Moeckel D, et al. Effect of cellular and microenvironmental multidrug resistance on tumor-targeted drug delivery in triple-negative breast cancer. J Control Release. 2023;354:784-793. doi:10.1016/j.jconrel.2022.12.056

144. Rahma OE, Hodi FS. The intersection between tumor angiogenesis and immune suppression. Clin Cancer Res. 2019;25(18):5449-5457. doi:10.1158/1078-0432.Ccr-18-1543

145. Liu J, Liu Q, Li Y, Li Q, Su F, Yao H, et al. Efficacy and safety of camrelizumab combined with apatinib in advanced triple-negative breast cancer: an open-label phase II trial. J Immunother Cancer. 2020;8(1):e000696. doi:10.1136/jitc-2020-000696

146. Vito A, Rathmann S, Mercanti N, El-Sayes N, Mossman K, Valliant J. Combined radionuclide therapy and immunotherapy for treatment of triple negative breast cancer. Int J Mol Sci. 2021;22(9):4843. doi:10.3390/ijms22094843

147. Chen X, Feng L, Huang Y, Wu Y, Xie N. Mechanisms and strategies to overcome PD-1/PD-L1 blockade resistance in triple-negative breast cancer. Cancers (Basel). 2022;15(1):104. doi:10.3390/cancers15010104

148. Castellano G, Giugliano F, Curigliano G, Marra A. Clinical utility of genomic signatures for the management of early and metastatic triple-negative breast cancer. Curr Opin Oncol. 2023;35(6):479-490. doi:10.1097/cco.0000000000000989

149. Golden EB, Marciscano AE, Formenti SC. Radiation therapy and the in situ vaccination approach. Int J Radiat Oncol Biol Phys. 2020;108(4):891-898. doi:10.1016/j.ijrobp.2020.08.023

150. Cao Y, Meng F, Cai T, Gao L, Lee J, Solomevich SO, et al. Nanoparticle drug delivery systems responsive to tumor microenvironment: promising alternatives in the treatment of triple‐negative breast cancer. WIREs Nanomed Nanobiotechnol. 2024;16(2):e1950. doi:10.1002/wnan.1950

151. Zhen X, Li Y, Yuan W, Zhang T, Li M, Huang J, et al. Biointerface‐engineered hybrid nanovesicles for targeted reprogramming of tumor microenvironment. Adv Mater. 2024;36(41):2401495. doi:10.1002/adma.202401495

152. Yu L, Gao L, Liang B, Zhang L, Wu M, Liu J. Polymer-based nanodrugs enhance sonodynamic therapy through epigenetic reprogramming of the immunosuppressive tumor microenvironment. J Control Release. 2025;380:125-137. doi:10.1016/j.jconrel.2025.01.086

153. Jiao S, Xia W, Yamaguchi H, Wei Y, Chen MK, Hsu JM, et al. PARP inhibitor upregulates PD-L1 expression and enhances cancer-associated immunosuppression. Clin Cancer Res. 2017;23(14):3711-3720. doi:10.1158/1078-0432.Ccr-16-3215

154. Wang S, Sun K, Xiao Y, Feng B, Mikule K, Ramaswamy S, et al. Evaluation of niraparib in combination with anti-PD-1/anti-PD-L1 in preclinical models. Cancer Res. 2018;78(13): Abstract No. 1724. doi:10.1158/1538-7445.am2018-1724

155. Wang S, Chang CW, Huang J, Zeng S, Zhang X, Hung MC, et al. Gasdermin C sensitizes tumor cells to PARP inhibitor therapy in cancer models. J Clin Invest. 2024;134(1):e166841. doi:10.1172/jci166841

156. Vinayak S, Tolaney SM, Schwartzberg L, Mita M, McCann G, Tan AR, et al. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019;5(8):1132-1140. doi:10.1001/jamaoncol.2019.1029

157. Domchek SM, Postel-Vinay S, Im SA, Park YH, Delord JP, Italiano A, et al. Olaparib and durvalumab in patients with germline BRCA-mutated metastatic breast cancer (MEDIOLA): an open-label, multicentre, phase 1/2, basket study. Lancet Oncol. 2020;21(9):1155-1164. doi:10.1016/s1470-2045(20)30324-7

158. Rugo H, Robson M, Im SA, Dalenc F, Ruiz EY, Im YH, et al. Pembrolizumab + olaparib vs pembrolizumab + chemotherapy after induction with pembrolizumab + chemotherapy for locally recurrent inoperable or metastatic TNBC: randomized open-label phase 2 KEYLYNK-009 study. Cancer Res. 2024;84(9):GS01-5-GS-5. doi:10.1158/1538-7445.SABCS23-GS01-05

159. Vonderheide RH, Domchek SM, Clark AS. Immunotherapy for Breast Cancer: What Are We Missing? Clin Cancer Res. 2017;23(11):2640-6. doi:10.1158/1078-0432.Ccr-16-2569

160. Zachariah NN, Basu A, Gautam N, Ramamoorthi G, Kodumudi KN, Kumar NB, et al. Intercepting premalignant, preinvasive breast lesions through vaccination. Front Immunol. 2021;12:786286. doi:10.3389/fimmu.2021.786286

161. Abdou Y, Goudarzi A, Yu JX, Upadhaya S, Vincent B, Carey LA. Immunotherapy in triple negative breast cancer: beyond checkpoint inhibitors. NPJ Breast Cancer. 2022;8(1):121. doi:10.1038/s41523-022-00486-y

162. Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson AL, Wolin A, et al. EYA3 regulation of NF-κb and CCL2 suppresses cytotoxic NK cells in the premetastatic niche to promote TNBC metastasis. Sci Adv. 2025;11(19):eadt0504. doi:10.1126/sciadv.adt0504

163. Wu S, Ge A, Deng X, Liu L, Wang Y. Evolving immunotherapeutic solutions for triple-negative breast carcinoma. Cancer Treat Rev. 2024;130:102817. doi:10.1016/j.ctrv.2024.102817

164. Ravi K, Zhang Y, Sakala L, Manoharan TJM, Pockaj B, LaBaer J, et al. Tumor microenvironment on-a-chip and single-cell analysis reveal synergistic stromal-immune crosstalk on breast cancer progression. Adv Sci (Weinh). 2025;12(16):e2413457. doi:10.1002/advs.202413457

165. González-Callejo P, García-Astrain C, Herrero-Ruiz A, Henriksen-Lacey M, Seras-Franzoso J, Abasolo I, et al. 3D bioprinted tumor-stroma models of triple-negative breast cancer stem cells for preclinical targeted therapy evaluation. ACS Appl Mater Interfaces. 2024;16(21):27151-27163. doi:10.1021/acsami.4c04135

166. Doherty MR, Parvani JG, Tamagno I, Junk DJ, Bryson BL, Cheon HJ, et al. The opposing effects of interferon-beta and oncostatin-M as regulators of cancer stem cell plasticity in triple-negative breast cancer. Breast Cancer Res. 2019;21(1):54. doi:10.1186/s13058-019-1136-x

167. Hua Z, White J, Zhou J. Cancer stem cells in TNBC. Semin Cancer Biol. 2022;82:26-34. doi:10.1016/j.semcancer.2021.06.015

168. Jan A, Sofi S, Jan N, Mir MA. An update on cancer stem cell survival pathways involved in chemoresistance in triple-negative breast cancer. Future Oncol. 2025;21(6):715-735. doi:10.1080/14796694.2025.2461443

169. Liu CC, Chen L, Cai YW, Chen YF, Liu YM, Zhou YJ, et al. Targeting EMSY-mediated methionine metabolism is a potential therapeutic strategy for triple-negative breast cancer. Cell Rep Med. 2024;5(2):101396. doi:10.1016/j.xcrm.2024.101396

170. Liu M, Qian M, Sun W, Sun X, Sun Y, Yu M, et al. Immunosuppressive microenvironment of liver restrains chemotherapeutic efficacy in triple-negative breast cancer. J Immunother Cancer. 2025;13(3):e010871. doi:10.1136/jitc-2024-010871

171. Zheng P, Hu Z, Shen Y, Gu L, Ouyang Y, Duan Y, et al. PSAT1 impairs ferroptosis and reduces immunotherapy efficacy via GPX4 hydroxylation. Nat Chem Biol. 2025;21:1420-1432. doi:10.1038/s41589-025-01887-3

172. Jing Y, Wu Y, Hu Q, Wu W, Li D, Hu W, et al. Remodelling hypoxic TNBC microenvironment restores antitumor efficacy of Vγ9Vδ2 T cell therapy. Br J Cancer. 2025;133(3):365-380. doi:10.1038/s41416-025-03045-x

173. Wang M, Zheng Y, Hao Q, Mao G, Dai Z, Zhai Z, et al. Hypoxic BMSC-derived exosomal miR-210-3p promotes progression of triple-negative breast cancer cells via NFIX-Wnt/β-catenin signaling axis. J Transl Med. 2025;23(1):39. doi:10.1186/s12967-024-05947-5

174. El-Guindy DM, Ibrahim FM, Ali DA, El-Horany HE, Sabry NM, Elkholy RA, et al. Hypoxia-induced autophagy in triple negative breast cancer: association with prognostic variables, patients' survival and response to neoadjuvant chemotherapy. Virchows Arch. 2023;482(5):823-837. doi:10.1007/s00428-023-03527-4

175. Zhu Y, Zhu X, Tang C, Guan X, Zhang W. Progress and challenges of immunotherapy in triple-negative breast cancer. Biochim Biophys Acta Rev Cancer. 2021;1876(2):188593. doi:10.1016/j.bbcan.2021.188593

176. Tiwari H, Singh S, Sharma S, Gupta P, Verma A, Chattopadhaya A, et al. Deciphering the landscape of triple negative breast cancer from microenvironment dynamics and molecular insights to biomarker analysis and therapeutic modalities. Med Res Rev. 2025;45(3):817-841. doi:10.1002/med.22090

177. Carlino F, Diana A, Piccolo A, Ventriglia A, Bruno V, De Santo I, et al. Immune-based therapy in triple-negative breast cancer: from molecular biology to clinical practice. Cancers (Basel). 2022;14(9):2102. doi:10.3390/cancers14092102

178. Lindberg I, Saleh A, Tutzauer J, Gunnarsdottir FB, Rydén L, Bergenfelz C, et al. Prognostic relevance of CD163+ immune cells in patients with metastatic breast cancer. Cancer Immunol Immunother. 2025;74(2):42. doi:10.1007/s00262-024-03892-2

179. Chen Y, Yang L, Huang Y, Zhu T, Zhang L, Cheng M, et al. Intratumoral microbiota predicts the response to neoadjuvant chemoimmunotherapy in triple-negative breast cancer. J Immunother Cancer. 2025;13(4):e010365. doi:10.1136/jitc-2024-010365

180. Marcel V, Ghayad SE, Belin S, Therizols G, Morel AP, Solano-Gonzàlez E, et al. P53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. Cancer Cell. 2013;24(3):318–330. doi:10.1016/j.ccr.2013.08.013

181. Tang Y, Xu A, Xu Z, Xie J, Huang W, Zhang L, et al. Multi-omics analyses of the heterogenous immune microenvironment in triple-negative breast cancer implicate UQCRFS1 potentiates tumor progression. Exp Hematol Oncol. 2025;14(1):85. doi:10.1186/s40164-025-00672-1

182. Mariano NC, Marotti JD, Chen Y, Karakyriakou B, Salgado R, Christensen BC, et al. Quantitative proteomics analysis of triple-negative breast cancers. NPJ Precis Oncol. 2025;9(1):117. doi:10.1038/s41698-025-00907-8

Breast Cancer TME Targeted Therapies.

Published

2025-12-16

How to Cite

1.
Li Y, Chen Y, Mu Y, Xiu X, Qin W. Tumor Microenvironment in Triple-Negative Breast Cancer and Targeting Approaches. cbtt [Internet]. 2025 Dec. 16 [cited 2025 Dec. 23];:1-31. Available from: https://www.cancerbiometherapy.com/index.php/cbtt/article/view/5

Issue

Section

Review