Advancing Precision Oncology Using Data-Driven Machine Learning Approaches
Keywords:
Personalized medicine, Precision oncology, predictive analytics, pharmacogenomics, biomarker, computational pathology, artificial intelligence, large language modelsAbstract
Precision oncology is being transformed by the integration of advanced machine learning (ML) methods and extensive biomedical data from genomics, imaging, proteomics, and clinical records. ML techniques, including supervised, unsupervised, deep learning, and reinforcement learning, have progressed from experimental tools to robust systems that identify clinically actionable biomarkers, refine prognosis, and guide personalized therapies. Deep learning models now achieve expert-level performance in tumor detection, grading, and outcome prediction from digital pathology and radiological images, improving diagnostic precision and therapeutic decision-making. Multi-modal and graph-based fusion networks enable the creation of patient-specific digital twins that simulate treatment responses and optimize therapeutic strategies. Data-centric methodologies such as federated learning, differential privacy, and synthetic data generation address challenges related to data sharing and patient privacy. Additionally, large language models trained on biomedical literature are increasingly integrating structured and unstructured clinical data, thereby fostering hypothesis generation and natural language–based decision support. However, challenges, including data heterogeneity, interpretability, algorithmic bias, and regulatory and ethical constraints, remain. Rigorous benchmarking, explainable AI methods, and prospective multi-center trials are essential for validating ML tools and establishing clinician trust. This review discusses recent developments in next-generation ML for precision oncology.
References
1. Cell editorial team. Five decades of advances in cancer research. Cell. 2024;187(7):1567-1568. doi:10.1016/j.cell.2024.02.044
2. Re A, Nardella C, Quattrone A, Lunardi A. Editorial: precision medicine in oncology. Front Oncol. 2018;8:479. doi:10.3389/fonc.2018.00479
3. Fountzilas E, Pearce T, Baysal MA, Chakraborty A, Tsimberidou AM. Convergence of evolving artificial intelligence and machine learning techniques in precision oncology. NPJ Digit Med. 2025;8(1):75. doi:10.1038/s41746-025-01471-y
4. Repetto M, Fernandez N, Drilon A, Chakravarty D. Precision oncology: 2024 in review. Cancer Discov. 2024;14(12):2332-2345. doi:10.1158/2159-8290.CD-24-1476
5. El Naqa I. Perspectives on making big data analytics work for oncology. Methods. 2016;111:32-44. doi:10.1016/j.ymeth.2016.08.010
6. Loni M, Poursalim F, Asadi M, Gharehbaghi A. A review on generative AI models for synthetic medical text, time series, and longitudinal data. NPJ Digit Med. 2025;8(1):281. doi:10.1038/s41746-024-01409-w
7. Li C, Guo Y, Lin X, Feng X, Xu D, Yang R. Deep reinforcement learning in radiation therapy planning optimization: a comprehensive review. Phys Med. 2024;125:104498. doi:10.1016/j.ejmp.2024.104498
8. Giansanti D, Morelli S. Exploring the potential of digital twins in cancer treatment: a narrative review of reviews. J Clin Med. 2025;14(10):3574. doi:10.3390/jcm14103574
9. Chang YW, Ryu JK, An JK, Choi N, Park YM, Ko KH, et al. Artificial intelligence for breast cancer screening in mammography (AI-STREAM): preliminary analysis of a prospective multicenter cohort study. Nat Commun. 2025;16(1):2248. doi:10.1038/s41467-025-57469-3
10. He Y, Zhao H, Wong STC. Deep learning powers cancer diagnosis in digital pathology. Comput Med Imaging Graph. 2021;88:101820. doi:10.1016/j.compmedimag.2020.101820
11. Hashem H, Sultan I. Revolutionizing precision oncology: the role of artificial intelligence in personalized pediatric cancer care. Front Med (Lausanne). 2025;12:1555893. doi:10.3389/fmed.2025.1555893
12. Shah K, Ahmed M, Kazi JU. The aurora kinase/beta-catenin axis contributes to dexamethasone resistance in leukemia. NPJ Precis Oncol. 2021;5(1):13. doi:10.1038/s41698-021-00148-5
13. Nasimian A, Ahmed M, Hedenfalk I, Kazi JU. A deep tabular data learning model predicting cisplatin sensitivity identifies BCL2L1 dependency in cancer. Comput Struct Biotechnol J. 2023;21:956-964. doi:10.1016/j.csbj.2023.01.020
14. Nasimian A, Al Ashiri L, Ahmed M, Duan H, Zhang X, Ronnstrand L, Kazi JU. A receptor tyrosine kinase inhibitor sensitivity prediction model identifies AXL dependency in leukemia. Int J Mol Sci. 2023;24(4):3830. doi:10.3390/ijms24043830
15. Abgrall G, Holder AL, Chelly Dagdia Z, Zeitouni K, Monnet X. Should AI models be explainable to clinicians? Crit Care. 2024;28(1):301. doi:10.1186/s13054-024-05005-y
16. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531-537. doi:10.1126/science.286.5439.531
17. Consortium APG. AACR project GENIE: powering precision medicine through an international consortium. Cancer Discov. 2017;7(8):818-831. doi:10.1158/2159-8290.CD-17-0151
18. Samuel GN, Farsides B. The UK's 100,000 genomes project: manifesting policymakers' expectations. New Genet Soc. 2017;36(4):336-353. doi:10.1080/14636778.2017.1370671
19. Mandl KD, Gottlieb D, Mandel JC. Integration of AI in healthcare requires an interoperable digital data ecosystem. Nat Med. 2024;30(3):631-634. doi:10.1038/s41591-023-02783-w
20. Rafique R, Islam SMR, Kazi JU. Machine learning in the prediction of cancer therapy. Comput Struct Biotechnol J. 2021;19:4003-4017. doi:10.1016/j.csbj.2021.07.003
21. Kazi JU. AI-driven drug response prediction for personalized cancer medicine. In: artificial intelligence for disease diagnosis and prognosis in smart healthcare. 1st ed. Boca Raton: CRC Press; 2023. p. 1-26. doi:10.1201/9781003251903-4
22. Shah K, Nasimian A, Ahmed M, Al Ashiri L, Denison L, Sime W, et al. PLK1 as a cooperating partner for BCL2-mediated antiapoptotic program in leukemia. Blood Cancer J. 2023;13(1):139. doi:10.1038/s41408-023-00914-7
23. Nasimian A, Younus S, Tatli O, Hammarlund EU, Pienta KJ, Ronnstrand L, et al. AlphaML: a clear, legible, explainable, transparent, and elucidative binary classification platform for tabular data. Patterns (N Y). 2024;5(1):100897. doi:10.1016/j.patter.2023.100897
24. Huang S, Cai N, Pacheco PP, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom. 2018;15(1):41-51. doi:10.21873/cgp.20063
25. Segal NH, Pavlidis P, Noble WS, Antonescu CR, Viale A, Wesley UV, et al. Classification of clear-cell sarcoma as a subtype of melanoma by genomic profiling. J Clin Oncol. 2003;21(9):1775-1781. doi:10.1200/JCO.2003.10.108
26. Diaz-Uriarte R, Alvarez de Andres S. Gene selection and classification of microarray data using random forest. BMC Bioinformatics. 2006;7:3. doi:10.1186/1471-2105-7-3
27. Li G, Xia K. Enhanced prognostic prediction of cancer-specific mortality in elderly bladder cancer patients post-radical cystectomy: an XGBoost model study. Transl Cancer Res. 2025;14(3):1902-1914. doi:10.21037/tcr-24-2023
28. Salvi M, Molinari F, Acharya UR, Molinaro L, Meiburger KM. Impact of stain normalization and patch selection on the performance of convolutional neural networks in histological breast and prostate cancer classification. Comput Methods Programs Biomed Update. 2021;1:100004. doi:10.1016/j.cmpbup.2021.100004
29. Akbarnejad A, Ray N, Barnes PJ, Bigras G. Toward accurate deep learning-based prediction of ki67, ER, PR, and HER2 status from H&E-stained breast cancer images. Appl Immunohistochem Mol Morphol. 2025;33(3):131-141. doi:10.1097/PAI.0000000000001258
30. Plass M, Olteanu GE, Dacic S, Kern I, Zacharias M, Popper H, et al. Comparative performance of PD-L1 scoring by pathologists and AI algorithms. Histopathology. 2025;87(1):90-100. doi:10.1111/his.15432
31. Piffer S, Ubaldi L, Tangaro S, Retico A, Talamonti C. Tackling the small data problem in medical image classification with artificial intelligence: a systematic review. Prog Biomed Eng (Bristol). 2024;6(3):032001. doi:10.1088/2516-1091/ad525b
32. Adeoye J, Hui L, Su YX. Data-centric artificial intelligence in oncology: a systematic review assessing data quality in machine learning models for head and neck cancer. J Big Data. 2023;10(1):28. doi:10.1186/s40537-023-00703-w
33. Tasci E, Zhuge Y, Camphausen K, Krauze AV. Bias and class imbalance in oncologic data-towards inclusive and transferrable AI in large scale oncology data sets. Cancers (Basel). 2022;14(12):2897. doi:10.3390/cancers14122897
34. Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, et al. Artificial intelligence in cancer imaging: clinical challenges and applications. CA Cancer J Clin. 2019;69(2):127-157. doi:10.3322/caac.21552
35. Rakaee M, Tafavvoghi M, Ricciuti B, Alessi JV, Cortellini A, Citarella F, et al. Deep learning model for predicting immunotherapy response in advanced non-small cell lung cancer. JAMA Oncol. 2025;11(2):109-118. doi:10.1001/jamaoncol.2024.5356
36. Prat A, Perou CM. Deconstructing the molecular portraits of breast cancer. Mol Oncol. 2011;5(1):5-23. doi:10.1016/j.molonc.2010.11.003
37. Zhang H, Xiong X, Cheng M, Ji L, Ning K. Deep learning enabled integration of tumor microenvironment microbial profiles and host gene expressions for interpretable survival subtyping in diverse types of cancers. mSystems. 2024;9(12):e0139524. doi:10.1128/msystems.01395-24
38. Zhai Z, Lei YL, Wang R, Xie Y. Supervised capacity preserving mapping: a clustering guided visualization method for scRNA-seq data. Bioinformatics. 2022;38(9):2496-2503. doi:10.1093/bioinformatics/btac131
39. Madhumita, Paul S. Capturing the latent space of an autoencoder for multi-omics integration and cancer subtyping. Comput Biol Med. 2022;148:105832. doi:10.1016/j.compbiomed.2022.105832
40. Xu H, Fu H, Long Y, Ang KS, Sethi R, Chong K, et al. Unsupervised spatially embedded deep representation of spatial transcriptomics. Genome Med. 2024;16(1):12. doi:10.1186/s13073-024-01283-x
41. Jiménez-Gaona Y, Carrión-Figueroa D, Lakshminarayanan V, Rodríguez-Álvarez MJ. Gan-based data augmentation to improve breast ultrasound and mammography mass classification. Biomedical Signal Processing and Control. 2024;94:106255. doi:10.1016/j.bspc.2024.106255
42. Skandarani Y, Jodoin PM, Lalande A. GANs for medical image synthesis: an empirical study. J Imaging. 2023;9(3):69. doi:10.3390/jimaging9030069
43. Qiu J, Hu Y, Li L, Erzurumluoglu AM, Braenne I, Whitehurst C, et al. Deep representation learning for clustering longitudinal survival data from electronic health records. Nat Commun. 2025;16:2534. doi:10.1038/s41467-025-56625-z
44. Sonmez TF, Harvey DJ, Beckett LA; Alzheimer's Disease Neuroimaging Initiative. An unsupervised learning approach for clustering joint trajectories of Alzheimer’s disease biomarkers: an application to ADNI data. Alzheimers Dement. 2025;21(2):e14524. doi:10.1002/alz.14524
45. Moassefi M, Rouzrokh P, Conte GM, Vahdati S, Fu T, Tahmasebi A, et al. Reproducibility of deep learning algorithms developed for medical imaging analysis: a systematic review. J Digit Imaging. 2023;36(5):2306-2312. doi:10.1007/s10278-023-00870-5
46. Janizek JD, Spiro A, Celik S, Blue BW, Russell JC, Lee TI, et al. PAUSE: principled feature attribution for unsupervised gene expression analysis. Genome Biology. 2023;24(1):81. doi:10.1186/s13059-023-02901-4
47. Unger M, Kather JN. A systematic analysis of deep learning in genomics and histopathology for precision oncology. BMC Med Genomics. 2024;17(1):48. doi:10.1186/s12920-024-01796-9
48. Chowa SS, Azam S, Montaha S, Payel IJ, Bhuiyan MRI, Hasan MZ, et al. Graph neural network-based breast cancer diagnosis using ultrasound images with optimized graph construction integrating the medically significant features. J Cancer Res Clin Oncol. 2023;149(20):18039-18064. doi:10.1007/s00432-023-05464-w
49. Vaida M, Wu J, Himdiat E, Haince JF, Bux RA, Huang G, et al. M-GNN: a graph neural network framework for lung cancer detection using metabolomics and heterogeneous graph modeling. Int J Mol Sci. 2025;26(10):4655. doi:10.3390/ijms26104655
50. Jia H, Zhang J, Ma K, Qiao X, Ren L, Shi X. Application of convolutional neural networks in medical images: a bibliometric analysis. Quant Imaging Med Surg. 2024;14(5):3501-3518. doi:10.21037/qims-23-1600
51. Chen C, Mat Isa NA, Liu X. A review of convolutional neural network based methods for medical image classification. Comput Biol Med. 2025;185:109507. doi:10.1016/j.compbiomed.2024.109507
52. Jiao F, Shang Z, Lu H, Chen P, Chen S, Xiao J, et al. A weakly supervised deep learning framework for automated PD-L1 expression analysis in lung cancer. Front Immunol. 2025;16:1540087. doi:10.3389/fimmu.2025.1540087
53. Shamai G, Livne A, Polonia A, Sabo E, Cretu A, Bar-Sela G, et al. Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer. Nat Commun. 2022;13(1):6753. doi:10.1038/s41467-022-34275-9
54. Qu Z, Wang Y, Guo D, He G, Sui C, Duan Y, et al. Comparison of deep learning models to traditional Cox regression in predicting survival of colon cancer: based on the SEER database. J Gastroenterol Hepatol. 2024;39(9):1816–1826. doi:10.1111/jgh.16598
55. Chae S, Street WN, Ramaraju N, Gilbertson-White S. Prediction of cancer symptom trajectory using longitudinal electronic health record data and long short-term memory neural network. JCO Clin Cancer Inform. 2024;8:e2300039. doi:10.1200/CCI.23.00039
56. Jiang X, Wang S, Zhang Y. Vision transformer promotes cancer diagnosis: a comprehensive review. Expert Syst Appl. 2024;252:124113. doi:10.1016/j.eswa.2024.124113
57. Reddy CKK, Reddy PA, Janapati H, Assiri B, Shuaib M, Alam S, et al. A fine-tuned vision transformer based enhanced multi-class brain tumor classification using MRI scan imagery. Front Oncol. 2024;14:1400341. doi:10.3389/fonc.2024.1400341
58. Dalla-Torre H, Gonzalez L, Mendoza-Revilla J, Lopez Carranza N, Grzywaczewski AH, Oteri F, et al. Nucleotide transformer: building and evaluating robust foundation models for human genomics. Nat Methods. 2025;22(2):287-297. doi:10.1038/s41592-024-02523-z
59. Wang C, Kumar GA, Rajapakse JC. Drug discovery and mechanism prediction with explainable graph neural networks. Sci Rep. 2025;15(1):179. doi:10.1038/s41598-024-83090-3
60. Campana PA, Prasse P, Lienhard M, Thedinga K, Herwig R, Scheffer T. Cancer drug sensitivity estimation using modular deep graph neural networks. NAR Genom Bioinform. 2024;6(2):lqae043. doi:10.1093/nargab/lqae043
61. Schulte-Sasse R, Budach S, Hnisz D, Marsico A. Integration of multiomics data with graph convolutional networks to identify new cancer genes and their associated molecular mechanisms. Nat Mach Intell. 2021;3(6):513-526. doi:10.1038/s42256-021-00325-y
62. Su X, Hu P, Li D, Zhao B, Niu Z, Herget T, et al. Interpretable identification of cancer genes across biological networks via transformer-powered graph representation learning. Nat Biomed Eng. 2025;9(3):371-389. doi:10.1038/s41551-024-01312-5
63. Zhang J, Chao H, Dasegowda G, Wang G, Kalra MK, Yan P. Revisiting the trustworthiness of saliency methods in radiology AI. Radiology: Artificial Intelligence. 2024;6(1):e220221. doi:10.1148/ryai.220221
64. Sarkar S, Bora RP, Kaushal B, George SN, Raja K. Assessing the noise robustness of class activation maps: a framework for reliable model interpretability. Image and Vision Computing. 2025;163:105717. doi:10.1016/j.imavis.2025.105717
65. Brima Y, Atemkeng M. Saliency-driven explainable deep learning in medical imaging: bridging visual explainability and statistical quantitative analysis. Biodata Min. 2024;17(1):18. doi:10.1186/s13040-024-00370-4
66. Anjana MP, Arun KS, Madhavan M. Transformer-based models for uncovering genetic mutations in cancerous and non-cancerous genomes. Gene. 2025;963:149460. doi:10.1016/j.gene.2025.149460
67. Moglia V, Johnson O, Cook G, de Kamps M, Smith L. Artificial intelligence methods applied to longitudinal data from electronic health records for prediction of cancer: a scoping review. BMC Medical Research Methodology. 2025;25(1):24. doi:10.1186/s12874-025-02473-w
68. Jayaraman P, Desman J, Sabounchi M, Nadkarni GN, Sakhuja A. A primer on reinforcement learning in medicine for clinicians. NPJ Digit Med. 2024;7(1):337. doi:10.1038/s41746-024-01316-0
69. Banumathi K, Venkatesan L, Benjamin LS, Vijayalakshmi K, Satchi NS. Reinforcement learning in personalized medicine: a comprehensive review of treatment optimization strategies. Cureus. 2025;17(4):e82756. doi:10.7759/cureus.82756
70. Eastman B, Przedborski M, Kohandel M. Reinforcement learning derived chemotherapeutic schedules for robust patient-specific therapy. Sci Rep. 2021;11(1):17882. doi:10.1038/s41598-021-97028-6
71. Tosca EM, De Carlo A, Ronchi D, Magni P. Model-informed reinforcement learning for enabling precision dosing via adaptive dosing. Clin Pharmacol Ther. 2024;116(3):619-636. doi:10.1002/cpt.3356
72. Tseng HH, Luo Y, Cui S, Chien JT, Ten Haken RK, El Naqa I. Deep reinforcement learning for automated radiation adaptation in lung cancer. Med Phys. 2017;44(12):6690-6705. doi:10.1002/mp.12625
73. Mashayekhi H, Nazari M, Jafarinejad F, Meskin N. Deep reinforcement learning-based control of chemo-drug dose in cancer treatment. Comput Methods Programs Biomed. 2024;243:107884. doi:10.1016/j.cmpb.2023.107884
74. Lu Y, Chu Q, Li Z, Wang M, Gatenby R, Zhang Q. Deep reinforcement learning identifies personalized intermittent androgen deprivation therapy for prostate cancer. Brief Bioinform. 2024;25(2):bbae071. doi:10.1093/bib/bbae071
75. Gallagher K, Strobl MAR, Park DS, Spoendlin FC, Gatenby RA, Maini PK, et al. Mathematical model-driven deep learning enables personalized adaptive therapy. Cancer Res. 2024;84(11):1929-1941. doi:10.1158/0008-5472.CAN-23-2040
76. De Domenico M, Allegri L, Caldarelli G, d'Andrea V, Di Camillo B, Rocha LM, et al. Challenges and opportunities for digital twins in precision medicine from a complex systems perspective. NPJ Digit Med. 2025;8(1):37. doi:10.1038/s41746-024-01402-3
77. Campos de Freitas J, Cantane DR, Rocha H, Dias J. A multiobjective beam angle optimization framework for intensity modulated radiation therapy. Eur J Oper Res. 2024;318(1):286-296. doi:10.1016/j.ejor.2024.05.004
78. Teplytska O, Ernst M, Koltermann LM, Valderrama D, Trunz E, Vaisband M, et al. Machine learning methods for precision dosing in anticancer drug therapy: a scoping review. Clin Pharmacokinet. 2024;63(9):1221-1237. doi:10.1007/s40262-024-01409-9
79. Chemingui Y, Deshwal A, Wei H, Fern A, Doppa J. Constraint-adaptive policy switching for offline safe reinforcement learning. Proc AAAI Conf Artif Intell. 2025;39(15):15722-15730. doi:10.1609/aaai.v39i15.33726
80. Bozcuk HS, Artac M. A simulated trial with reinforcement learning for the efficacy of irinotecan and ifosfamide versus topotecan in relapsed, extensive stage small cell lung cancer. BMC Cancer. 2024;24(1):1207. doi:10.1186/s12885-024-12985-1
81. Liu S, See KC, Ngiam KY, Celi LA, Sun X, Feng M. Reinforcement learning for clinical decision support in critical care: comprehensive review. J Med Internet Res 2020;22(7):e18477. doi:10.2196/18477
82. Hickman X, Lu Y, Prince D. Hybrid safe reinforcement learning: tackling distribution shift and outliers with the student-t’s process. Neurocomputing. 2025;634:129912. doi:10.1016/j.neucom.2025.129912
83. Andrades R, Recamonde-Mendoza M. Machine learning methods for prediction of cancer driver genes: a survey paper. Brief Bioinform. 2022;23(3):bbac062. doi:10.1093/bib/bbac062
84. Ostroverkhova D, Przytycka TM, Panchenko AR. Cancer driver mutations: predictions and reality. Trends Mol Med. 2023;29(7):554-566. doi:10.1016/j.molmed.2023.03.007
85. Vilov S, Heinig M. Deepsom: a CNN-based approach to somatic variant calling in WGS samples without a matched normal. Bioinformatics. 2023;39(1):btac828. doi:10.1093/bioinformatics/btac828
86. Yaacov A, Ben Cohen G, Landau J, Hope T, Simon I, Rosenberg S. Cancer mutational signatures identification in clinical assays using neural embedding-based representations. Cell Rep Med. 2024;5(6):101608. doi:10.1016/j.xcrm.2024.101608
87. Argelaguet R, Velten B, Arnol D, Dietrich S, Zenz T, Marioni JC, et al. Multi‐omics factor analysis-a framework for unsupervised integration of multi‐omics data sets. Mol Syst Biol. 2018;14(6):e8124. doi:10.15252/msb.20178124
88. Benfatto S, Sill M, Jones DTW, Pfister SM, Sahm F, von Deimling A, et al. Explainable artificial intelligence of DNA methylation-based brain tumor diagnostics. Nat Commun. 2025;16(1):1787. doi:10.1038/s41467-025-57078-0
89. Jia C, Wang T, Cui D, Tian Y, Liu G, Xu Z, et al. A metagene based similarity network fusion approach for multi-omics data integration identified novel subtypes in renal cell carcinoma. Brief Bioinform. 2024;25(6):bbae606. doi:10.1093/bib/bbae606
90. Chierici M, Bussola N, Marcolini A, Francescatto M, Zandonà A, Trastulla L, et al. Integrative Network Fusion: a Multi-Omics Approach in Molecular Profiling. Frontiers in Oncology. 2020;10:2020. doi:10.3389/fonc.2020.01065
91. Demir Karaman E, Isik Z. Multi-omics data analysis identifies prognostic biomarkers across cancers. Med Sci (Basel). 2023;11(3):44. doi:10.3390/medsci11030044
92. Baiao AR, Cai Z, Poulos RC, Robinson PJ, Reddel RR, Zhong Q, et al. A technical review of multi-omics data integration methods: from classical statistical to deep generative approaches. Brief Bioinform. 2025;26(4):bbaf355. doi:10.1093/bib/bbaf355
93. De Silva S, Alli-Shaik A, Gunaratne J. Machine learning-enhanced extraction of biomarkers for high-grade serous ovarian cancer from proteomics data. Sci Data. 2024;11(1):685. doi:10.1038/s41597-024-03536-1
94. Wenk D, Zuo C, Kislinger T, Sepiashvili L. Recent developments in mass-spectrometry-based targeted proteomics of clinical cancer biomarkers. Clin Proteomics. 2024;21(1):6. doi:10.1186/s12014-024-09452-1
95. Xu W, Zhang L, Qian X, Sun N, Tu X, Zhou D, et al. A deep learning framework for hepatocellular carcinoma diagnosis using MS1 data. Sci Rep. 2024;14(1):26705. doi:10.1038/s41598-024-77494-4
96. Arumalla KK, Haince JF, Bux RA, Huang G, Tappia PS, Ramjiawan B, et al. Metabolomics-based machine learning models accurately predict breast cancer estrogen receptor status. Int J Mol Sci. 2024;25(23):13029. doi:10.3390/ijms252313029
97. Chen Y, Wang B, Zhao Y, Shao X, Wang M, Ma F, et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat Commun. 2024;15(1):1657. doi:10.1038/s41467-024-46043-y
98. Xu Y, Wang X, Li Y, Mao Y, Su Y, Mao Y, et al. Multimodal single cell-resolved spatial proteomics reveal pancreatic tumor heterogeneity. Nat Commun. 2024;15(1):10100. doi:10.1038/s41467-024-54438-0
99. Bungaro C, Guida M, Apollonio B. Spatial proteomics of the tumor microenvironment in melanoma: current insights and future directions. Front Immunol. 2025;16:1568456. doi:10.3389/fimmu.2025.1568456
100. Jing SY, Wang HQ, Lin P, Yuan J, Tang ZX, Li H. Quantifying and interpreting biologically meaningful spatial signatures within tumor microenvironments. NPJ Precis Oncol. 2025;9(1):68. doi:10.1038/s41698-025-00857-1
101. Wang ZJ, Farooq AS, Chen YJ, Bhargava A, Xu AM, Thomson MW. Identifying perturbations that boost T-cell infiltration into tumours via counterfactual learning of their spatial proteomic profiles. Nat Biomed Eng. 2025;9(3):390-404. doi:10.1038/s41551-025-01357-0
102. Ardila D, Kiraly AP, Bharadwaj S, Choi B, Reicher JJ, Peng L, et al. End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography. Nat Med. 2019;25(6):954-961. doi:10.1038/s41591-019-0447-x
103. McKinney SM, Sieniek M, Godbole V, Godwin J, Antropova N, Ashrafian H, et al. International evaluation of an AI system for breast cancer screening. Nature. 2020;577(7788):89-94. doi:10.1038/s41586-019-1799-6
104. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017;14(12):749-762. doi:10.1038/nrclinonc.2017.141
105. Coudray N, Ocampo PS, Sakellaropoulos T, Narula N, Snuderl M, Fenyo D, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning. Nat Med. 2018;24(10):1559-1567. doi:10.1038/s41591-018-0177-5
106. Vorontsov E, Bozkurt A, Casson A, Shaikovski G, Zelechowski M, Severson K, et al. A foundation model for clinical-grade computational pathology and rare cancers detection. Nat Med. 2024;30(10):2924-2935. doi:10.1038/s41591-024-03141-0
107. Xiang J, Wang X, Zhang X, Xi Y, Eweje F, Chen Y, et al. A vision-language foundation model for precision oncology. Nature. 2025;638(8051):769-778. doi:10.1038/s41586-024-08378-w
108. Ritter M, Blume C, Tang Y, Patel A, Patel B, Berghaus N, et al. Spatially resolved transcriptomics and graph-based deep learning improve accuracy of routine CNS tumor diagnostics. Nat Cancer. 2025;6(2):292-306. doi:10.1038/s43018-024-00904-z
109. Wu C, Lima EABF, Stowers CE, Xu Z, Yam C, Son JB, et al. MRI-based digital twins to improve treatment response of breast cancer by optimizing neoadjuvant chemotherapy regimens. NPJ Digit Med. 2025;8(1):195. doi:10.1038/s41746-025-01579-1
110. Yang Z, Mitra A, Liu W, Berlowitz D, Yu H. TransformEHR: transformer-based encoder-decoder generative model to enhance prediction of disease outcomes using electronic health records. Nat Commun. 2023;14(1):7857. doi:10.1038/s41467-023-43715-z
111. Park P, Choi Y, Han N, Park YL, Hwang J, Chae H, et al. Leveraging natural language processing for efficient information extraction from breast cancer pathology reports: single-institution study. PLoS One. 2025;20(2):e0318726. doi:10.1371/journal.pone.0318726
112. Ankolekar A, Boie S, Abdollahyan M, Gadaleta E, Hasheminasab SA, Yang G, et al. Advancing breast, lung and prostate cancer research with federated learning. A systematic review. NPJ Digit Med. 2025;8(1):314. doi:10.1038/s41746-025-01591-5
113. Grothey B, Odenkirchen J, Brkic A, Schomig-Markiefka B, Quaas A, Buttner R, et al. Comprehensive testing of large language models for extraction of structured data in pathology. Commun Med. 2025;5(1):96. doi:10.1038/s43856-025-00808-8
114. Ammo T, Guillaume VGJ, Hofmann UK, Ulmer NM, Buenting N, Laenger F, et al. Evaluating ChatGPT-4o as a decision support tool in multidisciplinary sarcoma tumor boards: heterogeneous performance across various specialties. Front Oncol. 2024;14:1526288. doi:10.3389/fonc.2024.1526288
115. Vrdoljak J, Boban Z, Vilovic M, Kumric M, Bozic J. A review of large language models in medical education, clinical decision support, and healthcare administration. Healthcare (Basel). 2025;13(6):603. doi:10.3390/healthcare13060603
116. Ferber D, El Nahhas OSM, Wolflein G, Wiest IC, Clusmann J, Leßmann ME, et al. Development and validation of an autonomous artificial intelligence agent for clinical decision-making in oncology. Nat Cancer. 2025;6(8):1337-1349. doi:10.1038/s43018-025-00991-6
117. Verlingue L, Boyer C, Olgiati L, Brutti Mairesse C, Morel D, Blay JY. Artificial intelligence in oncology: ensuring safe and effective integration of language models in clinical practice. Lancet Reg Health Eur. 2024;46:101064. doi:10.1016/j.lanepe.2024.101064
118. Liang S, Zhang J, Liu X, Huang Y, Shao J, Liu X, et al. The potential of large language models to advance precision oncology. eBioMedicine. 2025;115:105695. doi:10.1016/j.ebiom.2025.105695
119. Jiang W, Ye W, Tan X, Bao YJ. Network-based multi-omics integrative analysis methods in drug discovery: a systematic review. Biodata Min. 2025;18(1):27. doi:10.1186/s13040-025-00442-z
120. Niu C, Lyu Q, Carothers CD, Kaviani P, Tan J, Yan P, et al. Medical multimodal multitask foundation model for lung cancer screening. Nat Commun. 2025;16(1):1523. doi:10.1038/s41467-025-56822-w
121. Zhang S, Xu Y, Usuyama N, Xu H, Bagga J, Tinn R, et al. A multimodal biomedical foundation model trained from fifteen million image-text pairs. NEJM AI. 2025;2(1):AIoa2400640. doi:10.1056/AIoa2400640
122. Zhang B, Wan Z, Luo Y, Zhao X, Samayoa J, Zhao W, et al. Multimodal integration strategies for clinical application in oncology. Front Pharmacol. 2025;16:1609079. doi:10.3389/fphar.2025.1609079
123. Younus S, Ronnstrand L, Kazi JU. Xputer: bridging data gaps with NMF, XGBoost, and a streamlined GUI experience. Front Artif Intell. 2024;7:1345179. doi:10.3389/frai.2024.1345179
124. Lipkova J, Chen RJ, Chen B, Lu MY, Barbieri M, Shao D, et al. Artificial intelligence for multimodal data integration in oncology. Cancer Cell. 2022;40(10):1095-1110. doi:10.1016/j.ccell.2022.09.012
125. Mohapatra RK, Jolly L, Dakua SP. Advancing explainable AI in healthcare: necessity, progress, and future directions. Computational Biology and Chemistry 2025;119:108599. doi:10.1016/j.compbiolchem.2025.108599
126. Dankwa-Mullan I, Weeraratne D. Artificial intelligence and machine learning technologies in cancer care: addressing disparities, bias, and data diversity. Cancer Discov. 2022;12(6):1423-1427. doi:10.1158/2159-8290.CD-22-0373
127. Nikolaou N, Salazar D, RaviPrakash H, Goncalves M, Mulla R, Burlutskiy N, et al. A machine learning approach for multimodal data fusion for survival prediction in cancer patients. NPJ Precis Oncol. 2025;9(1):128. doi:10.1038/s41698-025-00917-6
128. Boehm KM, Khosravi P, Vanguri R, Gao J, Shah SP. Harnessing multimodal data integration to advance precision oncology. Nat Rev Cancer. 2022;22(2):114-126. doi:10.1038/s41568-021-00408-3
129. Linares-Blanco J, Pazos A, Fernandez-Lozano C. Machine learning analysis of TCGA cancer data. PeerJ Comput Sci. 2021;7:e584. doi:10.7717/peerj-cs.584
130. Bonmati LM, Miguel A, Suarez A, Aznar M, Beregi JP, Fournier L, et al. CHAIMELEON project: creation of a pan-european repository of health imaging data for the development of AI-powered cancer management tools. Front Oncol. 2022;12:742701. doi:10.3389/fonc.2022.742701
131. Marti-Bonmati L, Blanquer I, Tsiknakis M, Tsakou G, Martinez R, Capella-Gutierrez S, et al. Empowering cancer research in Europe: the EUCAIM cancer imaging infrastructure. 2025;16(1):47. doi:10.1186/s13244-025-01913-x
132. Bohara G, Sadeghnejad Barkousaraie A, Jiang S, Nguyen D. Using deep learning to predict beam-tunable pareto optimal dose distribution for intensity-modulated radiation therapy. Med Phys. 2020;47(9):3898-3912. doi:10.1002/mp.14374
133. Amit G, Purdie TG, Levinshtein A, Hope AJ, Lindsay P, Marshall A, et al. Automatic learning-based beam angle selection for thoracic IMRT. Med Phys. 2015;42(4):1992-2005. doi:10.1118/1.4908000
134. Cheng G, Zhang F, Xing Y, Hu X, Zhang H, Chen S, et al. Artificial intelligence-assisted score analysis for predicting the expression of the immunotherapy biomarker PD-L1 in lung cancer. Front Immunol. 2022;13:893198. doi:10.3389/fimmu.2022.893198
135. Leng S, Nie G, Yi C, Xu Y, Zhang L, Zhu L. Machine learning-derived identification of tumor-infiltrating immune cell-related signature for improving prognosis and immunotherapy responses in patients with skin cutaneous melanoma. Cancer Cell Int. 2023;23(1):214. doi:10.1186/s12935-023-03048-9
136. Lin S, Ma Z, Yao Y, Huang H, Chen W, Tang D, et al. Automatic machine learning accurately predicts the efficacy of immunotherapy for patients with inoperable advanced non-small cell lung cancer using a computed tomography-based radiomics model. Diagn Interv Radiol. 2025;31(2):130-140. doi:10.4274/dir.2024.242972
137. Yang T, Wang X, Jin Y, Yao X, Sun Z, Chen P, et al. Deep learning radiopathomics predicts targeted therapy sensitivity in EGFR-mutant lung adenocarcinoma. J Transl Med. 2025;23(1):482. doi:10.1186/s12967-025-06480-9
138. Wu C, Jarrett AM, Zhou Z, Elshafeey N, Adrada BE, Candelaria RP, et al. MRI-based digital models forecast patient-specific treatment responses to neoadjuvant chemotherapy in triple-negative breast cancer. Cancer Res. 2022;82(18):3394-3404. doi:10.1158/0008-5472.CAN-22-1329
139. Sharma V, Kumar A, Sharma K. Digital twin application in women’s health: cervical cancer diagnosis with CervixNet. Cogn Syst Res. 2024;87:101264. doi:10.1016/j.cogsys.2024.101264
140. Stefaniga SA, Cordos AA, Ivascu T, Feier CVI, Muntean C, Stupinean CV, et al. Advancing precision oncology with digital and virtual twins: a scoping review. Cancers (Basel). 2024;16(22):3817. doi:10.3390/cancers16223817
141. Benjamens S, Dhunnoo P, Mesko B. The state of artificial intelligence based FDA approved medical devices and algorithms: an online database. NPJ Digit Med. 2023;6:75. doi:10.1038/s41746-020-00324-0
142. DuPreez JA, McDermott O. The use of predetermined change control plans to enable the release of new versions of software as a medical device. Expert Rev Med Devices. 2025;22(3):261-275. doi:10.1080/17434440.2025.2468787
143. Pruski M. Ethical challenges to the adoption of AI in healthcare: a review. New Bioeth. 2024;30(4):251 267. doi:10.1080/20502877.2025.2541438
144. European Commission. Regulatory framework on artificial intelligence [Internet]. Brussels (Belgium): European Commission; 2025 [cited 2025 Sep 12]. Available from: https://digital-strategy.ec.europa.eu/en/policies/regulatory-framework-ai
145. Kauffman M. The EU AI Act—foundations and framework. In: Navigating the EU AI Act: a practical guide for global manufacturing and engineering leaders. Cham (Switzerland): Springer; 2025. p. 1 22. doi:10.1007/978-3-031-99613-9_1
146. Van Leeuwen KG, Doorn L, Gelderblom E. The AI Act: responsibilities and obligations for healthcare professionals and organizations. Diagnostic and Interventional Radiology. 2025. doi:10.4274/dir.2025.252851
147. Ziegelmayer S, Graf M, Makowski M, Gawlitza J, Gassert F. Cost-effectiveness of artificial intelligence support in computed tomography-based lung cancer screening. Cancers (Basel). 2022;14(7):1729. doi:10.3390/cancers14071729
148. Kwee TC, Kwee RM. Workload of diagnostic radiologists in the foreseeable future based on recent (2024) scientific advances: updated growth expectations. Eur J Radiol. 2025;187:112103. doi:10.1016/j.ejrad.2025.112103
149. Nair A, Ong W, Lee A, Leow NW, Makmur A, Ting YH, et al. Enhancing radiologist productivity with artificial intelligence in magnetic resonance imaging (MRI): a narrative review. Diagnostics (Basel). 2024;15(9):1146. doi:10.3390/diagnostics15091146
150. Bahl M. Artificial intelligence in clinical practice: implementation considerations and barriers. J Breast Imaging. 2022;4(6):632-639. doi:10.1093/jbi/wbac065
151. Teo ZL, Jin L, Li S, Miao D, Zhang X, Ng WY, et al. Federated machine learning in healthcare: a systematic review on clinical applications and technical architecture. Cell Rep Med. 2024;5(2):101419. doi:10.1016/j.xcrm.2024.101481
152. Aubaidan BH, Kadir RA, Lajb MT, Anwar M, Qureshi KN, Taha BA, et al. A review of intelligent data analysis: machine learning approaches for addressing class imbalance in healthcare - challenges and perspectives. Intell Data Anal. 2025;29(3):699-719. doi:10.1177/1088467x241305509
153. Nasajpour M, Pouriyeh S, Parizi RM, Han M, Mosaiyebzadeh F, Xie Y, et al. Advances in application of federated machine learning for oncology and cancer diagnosis. Information. 2025;16(6):487. doi:10.3390/info16060487
154. Shukla S, Rajkumar S, Sinha A, Esha M, Elango K, Sampath V. Federated learning with differential privacy for breast cancer diagnosis enabling secure data sharing and model integrity. Sci Rep. 2025;15(1):13061. doi:10.1038/s41598-025-95858-2
155. Rane N, Choudhary S, Rane J. Explainable Artificial Intelligence (XAI) in healthcare: Interpretable Models for Clinical Decision Support. SSRN. 2023. doi:10.2139/ssrn.4637897
156. Anjara SG, Janik A, Dunford-Stenger A, Mc Kenzie K, Collazo-Lorduy A, Torrente M, et al. Examining explainable clinical decision support systems with think aloud protocols. PLoS One. 2023;18(9):e0291443. doi:10.1371/journal.pone.0291443
157. Corti C, Cobanaj M, Dee EC, Criscitiello C, Tolaney SM, Celi LA, et al. Artificial intelligence in cancer research and precision medicine: applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. Cancer Treat Rev. 2023;112:102498. doi:10.1016/j.ctrv.2022.102498
158. Bajwa J, Munir U, Nori A, Williams B. Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthc J. 2021;8(2):e188-e194. doi:10.7861/fhj.2021-0095
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Özge Tatli, Julhash Kazi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright
Authors publishing in Cancer Biome and Targeted Therapy retain full copyright of their work. By submitting a manuscript, authors grant the publisher (GCINC Press) a non-exclusive license to publish, distribute, and archive the article, and to identify itself as the original publisher.
License
All articles are published open access under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0).
https://creativecommons.org/licenses/by/4.0/. This license permits unrestricted use, distribution, reproduction, and adaptation in any medium, including for commercial purposes, provided that:
- Proper attribution is given to the original author(s) and source,
- A link to the license is provided, and
- Any changes made are clearly indicated.
Author Rights
Authors retain the right to:
- Use their article in future works (e.g., books, theses, lectures)
- Share and archive the final published version on institutional repositories or personal websites
- Adapt or translate their work, or authorize others to do so, with proper citation
Reuse by Third Parties
Content is licensed under the Creative Commons Attribution 4.0 International License (CC BY 4.0). Third parties may copy, redistribute, remix, transform, and build upon the material for any purpose, including commercial use, provided that appropriate credit is given to the original author(s).
Archiving and Preservation
All articles are made freely available immediately upon publication, without embargo. Cancer Biome and Targeted Therapy is hosted on the Open Journal Systems (OJS) platform, developed by the Public Knowledge Project (PKP). The journal participates in long-term digital preservation through the PKP Preservation Network (PKP PN) using the LOCKSS system. Authors are encouraged to self-archive in institutional repositories, disciplinary archives, and preprint servers in accordance with the license terms.